Brittle fracture materials in development "narrow" isolated defects
UDC
539.375EDN
UMGWGXAbstract
We obtain a macroscopic criterion of brittle fracture in the formation of an isolated defect in the form of "narrow" reveals cracks (undercut) in two cases: in the first conformal mapping of the exterior of the unit circle on a plane with a defect in the form of the undercut is given a rational function; and the second is like a conformal segment display given by power series. It is shown that in both cases, the limit curve is identical to the case where a defect is defined "narrow ellipse". At the same crack as focused or perpendicular tensile stress or compressive stress along. Hence it is that the shape and geometrical properties "quite narrow" isolated defect does not affect the values of critical loads required for the start of its development. Proposed in the criterion allows to evaluate the strength of the various brittle materials under the single static load at a constant temperature of experience.
Keywords:
brittle fracture materials, development isolated defects, form isolated defects, fracture limit curve, drop-crackReferences
- Дунаев И.М., Дунаев В.И. Об энергетическом условии разрушения твёрдых тел // ДАН. 2000. Т. 372. № 1. С. 43-45. [Dunaev I.M., Dunaev V.I. Ob energeticheskom uslovii razrusheniya tverdykh tel [On the energy provided fracture of solids]. Doklady Akademii Nauk [Proc. of Russian Academy of Science], 2000, vol. 372, no. 1, pp. 43-45. (In Russian)]
- Дунаев И.М., Дунаев В.И. Энергетическое условие разрушения твёрдых тел // Механика твёрдого тела. 2003. № 6. С. 69-81. [Dunaev I.M., Dunaev V.I. Energeticheskoe uslovie razrusheniya tverdykh tel [Power failure condition for solids]. Mekhanika tverdogo tela [Mechanics of solids], 2003, no. 6, pp. 69-81. (In Russian)]
- Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 707 с. [Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity]. Moscow, Nauka Publ., 1966, 707 p. (In Russian)]
- Белоносов С.М. Основные плоские статические задачи для односвязных и двухсвязных областей. Новосибирск: Изд-во СО АН СССР, 1962. 231 с. [Belonosov S.M. Osnovnye ploskie staticheskie zadachi dlya odnosvyaznykh i dvukhsvyaznykh oblastey [Basic flat static problem for simply connected and doubly connected domains]. Novosibirsk, Izd-vo SO AN SSSR Publ., 1962, 231 p. (In Russian)]
- Каминский А.А. Хрупкое разрушение вблизи отверстий. Киев: Наукова думка, 1982. 157 с. [Kaminskiy A.A. Khrupkoe razrushenie vblizi otverstiy [Brittle fracture near the holes]. Kiev, Naukova dumka Publ., 1982, 157 p. (In Russian)]
- Панасюк В.В., Буйна Е.В. К вопросу о предельном равновесии пластин с острыми концентраторами напряжений // Концентрация напряжений. 1968. Вып. 2. С. 115-125. [Panasyuk V.V., Buyna E.V. K voprosu o predel'nom ravnovesii plastin s ostrymi kontsentratorami napryazheniy [Problem of balance plates with acute stress concentrators]. Kontsentratsiya napryazheniy [Stress Concentration], 1968, iss. 2, pp. 115-125. (In Russian)]
- Си. Г., Либовиц Г. Математическая теория хрупкого разрушения. Разрушение. Т. 2. М.: Мир, 1975. С. 83-203. [Si. G., Libovits G. Matematicheskaya teoriya khrupkogo razrusheniya. Razrushenie. T. 2 [The mathematical theory of brittle fracture. Destruction, vol. 2]. Moscow, Mir Publ., 1975, pp. 83-203. (In Russian)]
- Дунаев В.И., Тугуз Т.К. О влиянии форм изолированного дефекта на макроскопический критерий хрупкого разрушения // Экологический вестник научных центров Черноморского экономического сотрудничества. 2007. № 2. С. 46-50. [Dunaev V.I., Tuguz T.K. O vliyanii form izolirovannogo defekta na makroskopicheskiy kriteriy khrupkogo razrusheniya [The effect of the forms of an isolated defect on a macroscopic criterion of brittle fracture]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2007, no. 2, pp. 46-50. (In Russian)]
- Огибалов П.М., Лопаткин В.А., Кишкин Б.П. Механика полимеров. М.: Из-во МГУ, 1975. 527 с. [Ogibalov P.M., Lopatkin V.A., Kishkin B.P. Mekhanika polimerov [Polymer Mechanics]. Moscow, Izdatelstvo MGU Publ., 1975, 527 p. (In Russian)]
- Ильюшин А.А., Ленский Б.С. Сопротивление материалов. М.: Гос. из-во физ.-мат. лит., 1959. 371 с. [Il'yushin A.A., Lenskiy B.S. Soprotivlenie materialov [Strength of Materials]. Moscow, Fizmatlit Publ., 1959, 371 p. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2015 Дунаев В.И., Молдаванов С.Ю., Лозовой С.Б., Георгияди В.Г.

This work is licensed under a Creative Commons Attribution 4.0 International License.