Koebe domain in the Montel class

Authors

  • Gavrilyuk M.N. Kuban State University, Krasnodar, Russian Federation

UDC

517.54

Abstract

Study subclass of the well-known Montel class of regular simple functions, determinated by additional metric condition. Using the module method in form of general theorem of extreme partition of the plane on non-overlapping admissible domains, solve the problem of finding Koebe domain in the pointed class. In terms of moduli domains of extreme partition, which includes extremal configuration, inner and upper boundary of Koebe domain are described. These boundaries are determinated by special equations. For points of inner boundary obtained extreme mapping of the unit disc to the simply connected domain, associated with some quadratic differential. For upper boundary extremal mappings do not exist, but the boundary can not be improved.

Keywords:

conformal mapping, quadratic differential, extremal decomposition, extremal mapping

Author Biography

  • Mikhail N. Gavrilyuk

    канд. физ.-мат. наук, доцент кафедры теории функций Кубанского государственного университета

References

  1. Дженкинс Дж. Однолистные функции и конформные отображения. М.: Ин. лит-ра, 1962. 262 с. [Jenkins J. Odnolistnye funktsii i konformnye otobrazheniya [Univalent functions and conformal mappings]. Moscow, Inostrannaya literatura Pub., 1962, 262 p. (In Russian)]
  2. Кузьмина Г.В. Модули семейств кривых и квадратичные дифференциалы // Тр. Мат. ин-та АН СССР. 1980. Т. 139. 240 с. [Kuzmina G.V. Moduli semeystv krivykh i kvadratichnye differentsialy [The modules of families of curves and quadratic differentials]. Trudy Matematicheskogo instituta AN SSSR [Proc. of the Institute of Mathematics of USSR Academy of Sciences], 1980, vol. 139, p. 240. (In Russian)]
  3. Jenkins J.A. On the existence of certain general extremal metrics 1, 11. // Ann. Math, 1957, Vol. 66. Iss. 2. P. 440-453; Tokoru Math. J., 1993, vol. 45, iss. 2. P. 249-257.
  4. Солынин А.Ю. Модули и экстремально-метрические проблемы // Алгебра и анализ. 1999. Т. 11. Вып. 1. С. 3-86. [Solynin A.Yu. Moduli i ekstremal'no-metricheskie problemy [Modules and Extreme-Metric Problems]. Algebra i analiz [Algebra and Analysis], 1999, vol. 11, no. 1, pp. 3-86.]
  5. Vasil'ev A. Moduli of families of curves for conformal and quasiconformal mappings // Lecture Notes in Math. 2002. Vol. 1788. Springer-Verlag. Berlin.
  6. Гаврилюк М.Н., Солынин А.Ю. Применение проблем модуля к некоторым экстремальным задачам. Деп. В ВИНИТИ, № 3072-83. 139 с. [Gavrilyuk M.N., Solynin A.Yu. Primenenie problem modulya k nekotorym ekstremal'nym zadacham [Applications module problems for certain extremal problems]. Dep. VINITI, no. 3072-83, 139 p. (In Russian).]
  7. Krzyz J., Zlotkiewiez E. Koebe sets for univalent functions with two preassigned points // Ann. Acad. Sci. Fenn. Ser. A Math. 1971. Vol. 487. P. 45-62.
  8. Кузьмина Г.В. Метод модулей и экстремальные задачи в классе $sum left( r right) $ // Зап. научн. семин. ПОМИ. 2013. Т. 418. С. 136-152. [Kuzmina G.V. Metod moduley i ekstremal'nye zadachi v klasse $sum left( r right)$ [Modules method and extremal problems in the class $sum left( r right) $]. Zapiski nauchnykh seminarov POMI RAN [Notes of scientific seminars of the St. Petersburg Department of the V.A. Steklov Institute of Mathematics of Russian Academy of Sciences], 2013, vol. 418, pp. 136-152. (In Russian)]
  9. Кузьмина Г.В. Об одной проблеме модуля для семейств кривых. Препринт ЛОМИ Р-6-83, Л., 1983. 43 с. [Kuzmina G.V. Ob odnoy probleme modulya dlya semeystv krivykh [On a problem of a module for families of curves]. Preprint LOMI R-6-83, Leningrad, 1983, 43 p. (In Russian)]
  10. Солынин А.Ю. Об экстремальных разбиениях плоскости или круга на две неналегающие области. Деп. в ВИНИТИ № 7800-84. 17 с. [Solynin A.Yu. Ob ekstremal'nykh razbieniyakh ploskosti ili kruga na dve nenalegayushchie oblasti [On extremal partitions of a plane or a circle into two nonoverlapping domains]. Dep. in VINITI, no. 7800-84, 17 p. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

45-50

Section

Article

Dates

Submitted

December 16, 2016

Accepted

January 12, 2017

Published

March 30, 2017

How to Cite

[1]
Gavrilyuk, M.N., Koebe domain in the Montel class. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, № 1, pp. 45–50.

Similar Articles

1-10 of 27

You may also start an advanced similarity search for this article.