Methods for estimation of dynamical noise
UDC
330.42DOI:
https://doi.org/10.31429/vestnik-15-4-6-11Abstract
The article discusses methods for measuring the random component of time series. Existing random noise processing methods work poorly in the case of dynamic noise even for regular dynamics. We consider the existing methods for measuring dynamic noise and propose to use an algorithm based on the Grassberger and Procaccia method. Analysis of the geometric structure of the reconstruction of the attractor (according to the Takens theorem) allows us to determine the scale at which the deterministic signal begins to exceed the noise. The resulting noise estimate allows us to estimate the accuracy of the prediction of the deterministic component. Random deviation grows in proportion to the root of time, complicating an accurate prediction even with accurate simulation of the deterministic component. Measurement of random noise allows us to estimate the possible horizon of the forecast. Methods based on measuring the correlation integral require a large number of points for analysis and take a lot of time for calculations, but have no alternative in the study of dynamic noise.
Keywords:
correlation integral, fractal dimension, nonlinear dynamics, time series, Taken's theoremReferences
- Kantz H., Schreiber T. Nonlinear time series analysis. Cambridge University Press, Cambridge, MA, 1997. 174 p.
- Sase T. et al. Estimating the level of dynamical noise in time series by using fractal dimensions // Physics Letters A. 2016. Т. 380. № 11. С. 1151–1163. DOI: 10.1016/j.physleta.2016.01.014
- Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D: Nonlinear Phenomena. 1983. Т. 9. № 1–2. С. 189–208. DOI: 1016/0167-2789(83)90298-1
- Yu D. et al. Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data // Physical Review E. 2000. Т. 61. № 4. С. 3750. DOI: 10.1103/PhysRevE.61.3750
- Urbanowicz K., Hołyst J.A. Noise-level estimation of time series using coarse-grained entropy // Physical Review E. 2003. Т. 67. № 4. С. 046218. DOI: 10.1103/PhysRevE.67.046218
- Яновский Л.П., Филатов Д.А. Анализ состояния финансовых рынков на основе методов нелинейной динамики // Финансы и кредит. 2005. № 32 (200). С. 2–13. [Yanovskij L.P., Filatov D.A. Analiz sostoyaniya finansovykh rynkov na osnove metodov nelineynoy dinamiki [Analysis of financial markets based on non-linear dynamic methods]. Financy i kredit [Finance and credit], 2005, no. 32 (200). pp. 2–13. (In Russian)]
- Калайдин Е.Н., Дюдин М.С. Оценка риска в рамках гипотезы фрактального рынка // Финансы и кредит. 2013. № 22 (550). С. 31–34. [Kalaidin E.N., Diudin M.S. Otsenka riska v ramkakh gipotezy fraktal'nogo rynka [Risk assessment in the framework of the fractal market hypothesis]. Finansy i kredit [Finance and credit], 2013, no. 22 (550), pp. 31–34. (In Russian)]
- Калайдин Е.Н., Дюдин М.С. Измерение стохастической составляющей в динамике активов российского рынка капитала // Экономика устойчивого развития. 2012. № 11. С. 126–132. [Kalaidin E.N., Diudin M.S. Izmerenie stokhasticheskoy sostavlyayushchey v dinamike aktivov rossiyskogo rynka kapitala [Measurement of the stochastic component in the dynamics of the assets of the Russian capital market]. Ekonomika ustojchivogo razvitiya [Economics of Sustainable Development], 2012, no. 11, pp. 126–132. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Дюдин М.С., Калайдин Е.Н.
This work is licensed under a Creative Commons Attribution 4.0 International License.