Photoelectric solar radiation converter based on AlInP/GaP/AlGaInPAs/GaAs/Ge/SiGe/Si multilayer heterostructures
UDC
538.958DOI:
https://doi.org/10.31429/vestnik-20-4-63-70Abstract
The production of economically viable and efficient gallium arsenide photovoltaic converters is possible by growing multilayer heterostructures on a silicon substrate using a SiGe buffer layer. This work describes a method for growing an AlInP/GaP/AlGaInPAs/GaAs/Ge/SiGe/Si heterostructure. During the calculations it was found that the AlGaInPAs and GaAs layers have isoperiodic compositions. At an aluminum concentration in the solid phase of 0.1 mol.fr., the isoperiod corresponds to the direct gap structure of the AlGaInPAs solid solution. The spectral characteristics of a cascade solar cell have been studied. Thus, radiation conversion is observed at wavelengths of 250–1800 nm. The external quantum efficiency EQE of the first Ge cascade reaches 60%, and the fourth GaP cascade — 90%. The high EQE value is associated with the matching of the crystal lattice periods of the second GaAs and third AlGaInPAs cascades. In addition, the work presents the load current-voltage characteristic. According to the data obtained, the conversion efficiency of the heterostructure is 41.3% and the current density j is 27.2 mA/cm2.
Keywords:
solid solution, zone recrystallization, solar cell, cascade, external quantum efficiency, spectral characteristicAcknowledgement
References
- Aberle, A.G., Fabrication and characterization of crystalline silicon thin-film materials for solar cells. Thin Solid Films, 2006, vol. 511–512, pp. 26–34. DOI: 10.1016/j.tsf.2005.12.070
- Green, M.A., Polycrystalline silicon on glass for thin-film solar cell. Applied Physics A, 2009, vol. 96, no. 1, pp. 153–159. DOI: 10.1007/s00339-009-5090-9
- Косяченко, Л.А., Грушко, Е.В., Микитюк, Т.И., Поглощательная способность полупроводников, используемых в производстве солнечных панелей. Физика и техника полупроводников, 2012, т. 46, вып. 4, с. 482–486. [Kosyachenko L.A., Grushko E.V., Mikityuk T.I. Absorptivity of semiconductors used in the production of solar cell panels. Semiconductors, 2012, vol. 46, iss. 4, pp. 482–486. (in Russian)] DOI: 10.1134/S1063782612040124
- Колтун, М.М., Солнечные элементы. Москва, Наука, 1987. [Koltun M.M. Solnechnye elementy = Solar cells. Moscow, Nauka, 1987. (in Russian)]
- Андреев, В.М., Евстропов, В.В., Калиновский, В.С., Лантратов, В.М., Хвостиков, В.П., Токопрохождение и потенциальная эффективность (КПД) солнечных элементов на основе p-n-переходов из GaAs и GaSb. Физика и техника полупроводников, 2009, т. 43, № 5, с. 671–678. [Andreev V.M., Evstropov V.V., Kalinovsky V.S., Lantratov V.M., Khvostikov V.P. Current flow and potential efficiency of solar cells based on GaAs and GaSb p-n junctions. Semiconductors, 2009, vol. 43, no. 5, pp. 671–678. (in Russian)] DOI: 10.1134/S1063782609050200
- Seredin, P.V., Goloshchapov, D.L., Arsentyev, I.N., Nikolayev, D.N., Pikhtin, N.A., Slipchenko, S.O., Leiste, H., Prutskij, T. Structural-spectroscopic study of epitaxial GaAs layers grown on compliant substrates based on a superstructural layer and protoporous silicon. Applied Surface Science, 2021, vol. 537, pp. 147985. DOI: 10.1016/j.apsusc.2020.147985
- Nikhil, J., Mantu, K.H., III–V multijunction solar cell integration with silicon: Present status, challenges and future outlook. Energy Harvesting and Systems, 2014, vol. 1, iss. 3–4, pp. 121–145. DOI: 10.1515/ehs-2014-0012
- Alferov, Zh.I., Andreev, V.M., Rumyantsev, V.D., Solar photovoltaics: trends and prospects. Semiconductors, 2004, vol. 38, no. 8, pp. 899–908. DOI: 10.1134/1.1787110
- Скачков, А.Ф., Оптимизация структуры трёхпереходного солнечного элемента GaInP/GaAs/Ge со встроенным брэгговским отражателем Al0,1Ga0,9As/Al0,8Ga0,2As. Автометрия, 2014, т. 50, № 4, с. 122–126. [Skachkov A.F. Optimization of the structure of a GaInP/GaAs/Ge triple-junction solar cell with an Al0,1Ga0,9As/Al0,8Ga0,2As integrated bragg reflector. Avtometriya = Autometry, 2014, vol. 50, no. 4, pp. 122–126. (in Russian)] DOI: 10.3103/S8756699014040165
- Лозовский, В.Н. Лунин, Л.С. Попов, В.П., Зонная перекристаллизация градиентом температуры полупроводниковых материалов. Москва, Металлургия, 1987. [Lozovsky, V.N. Lunin, L.S. Popov, V.P., Zonnaya perekristallizaciya gradientom temperatury poluprovodnikovyh materialov = Zone recrystallization by temperature gradient of semiconductor materials. Moscow, Metallurgy, 1987. (in Russian)]
- Губенко, А.Я., Известия АН СССР. Неорганические материалы, 1990. т. 26. № 2. с. 413–417. [Gubenko, A.Ya., News of the AS USSR. Inorganic materials, 1990, vol. 26, no. 2, pp. 413–417. (in Russian)]
- Донская А.В., Расчёт периода кристаллической решётки полупроводниковых твёрдых растворов А3В5. Пат. 2022614299 Российская Федерация. 2022. [Donskaya, A.V., Raschyot perioda kristallicheskoj reshyotki poluprovodnikovyh tvyordyh rastvorov А3В5 = Calculation of the crystal lattice period of semiconductor solid solutions А3В5. Pat. 2022614299 Russian Federation, 2022. (in Russian)]
- Донская, А.В., Расчёт ширины запрещённой зоны полупроводниковых твёрдых растворов А3В5. Пат. 2022613673 Российская Федерация. 2022. [Donskaya, A.V., Raschyot shiriny zapreshchyonnoj zony poluprovodnikovyh tvyordyh rastvorov А3В5 = Calculation of the band gap of semiconductor solid solutions А3В5. Pat. 2022613673 Russian Federation, 2022. (in Russian)]
- Lu, X., Hao, R., Diaz, M., Opila, R.L., Barnett, A., Improving GaP solar cell performance by passivating the surface using AlxGa1–xP epi–layer. IEEE Journal of the Electron Devices Society, 2013, vol. 1, no. 5, pp. 111–116. DOI: 10.1109/JEDS.2013.2266410
Downloads
Submitted
Published
How to Cite
Copyright (c) 2024 Lunin L.S., Lunina M.L., Pashchenko A.S., Donskaya A.V.
This work is licensed under a Creative Commons Attribution 4.0 International License.