Photoelectric solar radiation converter based on AlInP/GaP/AlGaInPAs/GaAs/Ge/SiGe/Si multilayer heterostructures

Authors

  • Lunin L.S. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don; Platov Polytechnic University (NPI), Novocherkassk, Российская Федерация ORCID 0000-0002-5534-9694
  • Lunina M.L. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Российская Федерация ORCID 0000-0002-9900-3767
  • Pashchenko A.S. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Российская Федерация ORCID 0000-0002-7976-9597
  • Donskaya A.V. Platov Polytechnic University, Novocherkassk, Российская Федерация ORCID 0000-0002-0548-9517

UDC

538.958

DOI:

https://doi.org/10.31429/vestnik-20-4-63-70

Abstract

The production of economically viable and efficient gallium arsenide photovoltaic converters is possible by growing multilayer heterostructures on a silicon substrate using a SiGe buffer layer. This work describes a method for growing an AlInP/GaP/AlGaInPAs/GaAs/Ge/SiGe/Si heterostructure. During the calculations it was found that the AlGaInPAs and GaAs layers have isoperiodic compositions. At an aluminum concentration in the solid phase of 0.1 mol.fr., the isoperiod corresponds to the direct gap structure of the AlGaInPAs solid solution. The spectral characteristics of a cascade solar cell have been studied. Thus, radiation conversion is observed at wavelengths of 250–1800 nm. The external quantum efficiency EQE of the first Ge cascade reaches 60%, and the fourth GaP cascade — 90%. The high EQE value is associated with the matching of the crystal lattice periods of the second GaAs and third AlGaInPAs cascades. In addition, the work presents the load current-voltage characteristic. According to the data obtained, the conversion efficiency of the heterostructure is 41.3% and the current density j is 27.2 mA/cm2.

Keywords:

solid solution, zone recrystallization, solar cell, cascade, external quantum efficiency, spectral characteristic

Acknowledgement

Growing experimental samples and measuring spectral characteristics were carried out within the framework of the state assignments of the Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences No. 122020100254-3, Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences No. 122020100326-7.

Author Infos

Leonid Sergeevich Lunin

Doctor of Physics and Mathematics Sciences, Professor of the Department of Physics and Photonics, South Russian State Polytechnic University; Chief Researcher of the Laboratory of Physics and Technology of Semiconductor Nanoheterostructures for Microwave Electronics and Photonics, SSC RAS

e-mail: lunin_ls@mail.ru

Marina Leonidovna Lunina

Leading Researcher at the Laboratory of Physics and Technologies of Semiconductor Nanoheterostructures for Microwave Electronics and Photonics SSC RAS

e-mail: marluna14@mail.ru

Alexander Sergeevich Pashchenko

Leading Researcher at the Laboratory of Physics and Technologies of Semiconductor Nanoheterostructures for Microwave Electronics and Photonics SSC RAS

e-mail: as.pashchenko@gmail.com

Alina Valentinovna Donskaya

Assistant Department of Physics and Photonics

e-mail: alina_donskaya.8@mail.ru

References

  1. Aberle, A.G., Fabrication and characterization of crystalline silicon thin-film materials for solar cells. Thin Solid Films, 2006, vol. 511–512, pp. 26–34. DOI: 10.1016/j.tsf.2005.12.070
  2. Green, M.A., Polycrystalline silicon on glass for thin-film solar cell. Applied Physics A, 2009, vol. 96, no. 1, pp. 153–159. DOI: 10.1007/s00339-009-5090-9
  3. Косяченко, Л.А., Грушко, Е.В., Микитюк, Т.И., Поглощательная способность полупроводников, используемых в производстве солнечных панелей. Физика и техника полупроводников, 2012, т. 46, вып. 4, с. 482–486. [Kosyachenko L.A., Grushko E.V., Mikityuk T.I. Absorptivity of semiconductors used in the production of solar cell panels. Semiconductors, 2012, vol. 46, iss. 4, pp. 482–486. (in Russian)] DOI: 10.1134/S1063782612040124
  4. Колтун, М.М., Солнечные элементы. Москва, Наука, 1987. [Koltun M.M. Solnechnye elementy = Solar cells. Moscow, Nauka, 1987. (in Russian)]
  5. Андреев, В.М., Евстропов, В.В., Калиновский, В.С., Лантратов, В.М., Хвостиков, В.П., Токопрохождение и потенциальная эффективность (КПД) солнечных элементов на основе p-n-переходов из GaAs и GaSb. Физика и техника полупроводников, 2009, т. 43, № 5, с. 671–678. [Andreev V.M., Evstropov V.V., Kalinovsky V.S., Lantratov V.M., Khvostikov V.P. Current flow and potential efficiency of solar cells based on GaAs and GaSb p-n junctions. Semiconductors, 2009, vol. 43, no. 5, pp. 671–678. (in Russian)] DOI: 10.1134/S1063782609050200
  6. Seredin, P.V., Goloshchapov, D.L., Arsentyev, I.N., Nikolayev, D.N., Pikhtin, N.A., Slipchenko, S.O., Leiste, H., Prutskij, T. Structural-spectroscopic study of epitaxial GaAs layers grown on compliant substrates based on a superstructural layer and protoporous silicon. Applied Surface Science, 2021, vol. 537, pp. 147985. DOI: 10.1016/j.apsusc.2020.147985
  7. Nikhil, J., Mantu, K.H., III–V multijunction solar cell integration with silicon: Present status, challenges and future outlook. Energy Harvesting and Systems, 2014, vol. 1, iss. 3–4, pp. 121–145. DOI: 10.1515/ehs-2014-0012
  8. Alferov, Zh.I., Andreev, V.M., Rumyantsev, V.D., Solar photovoltaics: trends and prospects. Semiconductors, 2004, vol. 38, no. 8, pp. 899–908. DOI: 10.1134/1.1787110
  9. Скачков, А.Ф., Оптимизация структуры трёхпереходного солнечного элемента GaInP/GaAs/Ge со встроенным брэгговским отражателем Al0,1Ga0,9As/Al0,8Ga0,2As. Автометрия, 2014, т. 50, № 4, с. 122–126. [Skachkov A.F. Optimization of the structure of a GaInP/GaAs/Ge triple-junction solar cell with an Al0,1Ga0,9As/Al0,8Ga0,2As integrated bragg reflector. Avtometriya = Autometry, 2014, vol. 50, no. 4, pp. 122–126. (in Russian)] DOI: 10.3103/S8756699014040165
  10. Лозовский, В.Н. Лунин, Л.С. Попов, В.П., Зонная перекристаллизация градиентом температуры полупроводниковых материалов. Москва, Металлургия, 1987. [Lozovsky, V.N. Lunin, L.S. Popov, V.P., Zonnaya perekristallizaciya gradientom temperatury poluprovodnikovyh materialov = Zone recrystallization by temperature gradient of semiconductor materials. Moscow, Metallurgy, 1987. (in Russian)]
  11. Губенко, А.Я., Известия АН СССР. Неорганические материалы, 1990. т. 26. № 2. с. 413–417. [Gubenko, A.Ya., News of the AS USSR. Inorganic materials, 1990, vol. 26, no. 2, pp. 413–417. (in Russian)]
  12. Донская А.В., Расчёт периода кристаллической решётки полупроводниковых твёрдых растворов А3В5. Пат. 2022614299 Российская Федерация. 2022. [Donskaya, A.V., Raschyot perioda kristallicheskoj reshyotki poluprovodnikovyh tvyordyh rastvorov А3В5 = Calculation of the crystal lattice period of semiconductor solid solutions А3В5. Pat. 2022614299 Russian Federation, 2022. (in Russian)]
  13. Донская, А.В., Расчёт ширины запрещённой зоны полупроводниковых твёрдых растворов А3В5. Пат. 2022613673 Российская Федерация. 2022. [Donskaya, A.V., Raschyot shiriny zapreshchyonnoj zony poluprovodnikovyh tvyordyh rastvorov А3В5 = Calculation of the band gap of semiconductor solid solutions А3В5. Pat. 2022613673 Russian Federation, 2022. (in Russian)]
  14. Lu, X., Hao, R., Diaz, M., Opila, R.L., Barnett, A., Improving GaP solar cell performance by passivating the surface using AlxGa1–xP epi–layer. IEEE Journal of the Electron Devices Society, 2013, vol. 1, no. 5, pp. 111–116. DOI: 10.1109/JEDS.2013.2266410

Issue

Section

Physics

Pages

63-70

Submitted

2023-10-16

Published

2023-12-31

How to Cite

Lunin L.S., Lunina M.L., Pashchenko A.S., Donskaya A.V. Photoelectric solar radiation converter based on AlInP/GaP/AlGaInPAs/GaAs/Ge/SiGe/Si multilayer heterostructures. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 4, pp. 63-70. DOI: https://doi.org/10.31429/vestnik-20-4-63-70 (In Russian)