Influence of composition, thermoelastic characteristics and concentration of components on average stresses in matrix composites reinforced by oriented fibers

Authors

  • Bardushkin V.V. National Research University of Electronic Technology, Moscow, Russian Federation
  • Kolesnikov V.I. Rostov State Transport University, Rostov-on-Don, Russian Federation
  • Kochetygov A.A. Rostov State Transport University, Rostov-on-Don, Russian Federation
  • Sychev A.P. Federal Research Centre the Southern Scientific Centre of the Russian Academy of~Sciences, Rostov-on-Don, Russia, Russian Federation
  • Yakovlev V.B. National Research University of Electronic Technology, Moscow, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-16-3-16-22

Abstract

A model is constructed in the work that allows predicting the influence of local stresses caused by changes in the volumes of the heterogeneity elements of two-component matrix composites with orthogonal reinforced (parallel to a fixed plane) fibers on average stresses over the material. The model is based on a generalized singular approximation of random field theory, used in solving a system of stochastic differential equilibrium equations for an elastic medium. When constructing the model, the concept of the stress concentration operator (fourth-rank tensor) is used, which connects the material average stresses with their local values within a single heterogeneity element. The generalized singular approximation allows you to obtain an explicit expression for the concentration operator, with the help of which a calculated relation is derived for determining average stresses in the considered matrix structures. The ratio allows you to take into account a number of factors. These include the composition and thermoelastic characteristics of the components of the composites, the volume concentration and orientation of the fibers in the matrix, as well as the difference factor in the magnitude of the change (jump) in temperature in various elements of the inhomogeneity of the material -- the fibers and the matrix.

For model composites with a silicon dioxide matrix and oriented fibers (copper, aluminum), numerical calculations were carried out to determine the values of the average material stresses in the directions of the axes of the laboratory coordinate system. The dependences of the indicated values on the volumetric content of fibers, as well as on variations in the magnitude of the temperature jump in the fibers and matrix, are studied. Model calculations showed that the difference in the magnitude of the temperature jump in the elements of heterogeneity and the volumetric concentration of fibers in the composites have a significant effect on the values of average stresses over the material.

Keywords:

matrix composite, thermoelastic properties, average stresses, simulation

Acknowledgement

Работа выполнена при финансовой поддержке гранта РФФИ (17-08-01374-а).

Author Infos

Vladimir V. Bardushkin

д-р физ.-мат. наук, профессор кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

e-mail: bardushkin@mail.ru

Vladimir I. Kolesnikov

президент, заведующий кафедрой "Теоретическая механика" Ростовского государственного университета путей сообщения

e-mail: kvi@rgups.ru

Andrei A. Kochetygov

аспирант кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

e-mail: aakcht@gmail.com

Aleksandr P. Sychev

канд. физ.-мат. наук, заведующий лабораторией транспорта и новых композиционных материалов Федерального исследовательского центра Южный научный центр РАН

e-mail: alekc_sap@mail.ru

Viktor B. Yakovlev

д-р физ.-мат. наук, профессор РАН, профессор кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ", главный научный сотрудник Института нанотехнологий микроэлектроники РАН

e-mail: yakvb@mail.ru

References

  1. Kerber, M.L. Polymer composite materials: structure, properties, technology. Profession, St. Petersburg, 2018. (In Russian)
  2. Shevchenko, V.G. Fundamentals of the physics of polymer composite materials. MSU Publ., Moscow, 2010. (In Russian)
  3. Kolesnikov, V.I., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B. Stress condition of composite materials under influence of thermodynamic factors. Vestnik Yuzhnogo nauchnogo tsentra RAN [Bulletin of the Southern Scientific Center of the Russian Academy of Sciences], 2005, vol. 1, no. 4, pp. 9–13. (In Russian)
  4. Kolesnikov, V.I., Bardushkin, V.V., Sychev, A.P., Yakovlev, V.B. Influence of the microstructure and thermoelastic characteristics of components on average stresses in fibrous composites. Materialy, tekhnologii, instrumenty [Materials, technologies, tools], 2009, vol. 14. no. 2, pp. 12–15. (In Russian)
  5. Kolesnikov, V.I., Bardushkin, V.V., Sorokin, A.I., Sychev, A.P., Yakovlev, V.B. Effect of thermoelastic characteristics of components, shape of non-isometric inclusions, and their orientation on average stresses in matrix structures. Physical Mesomechanics, 2018, vol. 21. no. 3, pp. 258–262. DOI: 10.1134/S1029959918030104 (In Russian)
  6. Gromov, D.G. Materials and processes for the formation of multilayer metallization of silicon VLSIC, tech. sci. doct. diss. Moscow, 2000. (In Russian)
  7. Klimovitsky, A.G., Gromov, D.G., Evdokimov, V.L., Lichmanov, I.O., Mochalov, A.I., Sulimin, A.D. Materials for metallization of silicon VLSIC. Elektronnaya promyshlennost' [Electronic industry], 2002, no. 1, pp. 60–66. (In Russian)
  8. Klimovitsky, A.G. Development of materials and processes for the formation of a metallization system for super-large integrated circuits of the submicron level, tech. sci. cand. diss. Moscow, 2004. (In Russian)
  9. Smolin, V.K. Features of the use of aluminum metallization in integrated circuits. Mikroelektronika [Microelectronics], 2004, vol. 33, no. 1, pp. 10–16. (In Russian)
  10. Gromov, D.G., Klimovitsky, A.G., Mochalov, A.I., Sulimin, A.D. The use of the effect of lowering the melting temperature of thin films of copper in the process of filling the grooves and contact windows for the technology of multilevel metallization of silicon IC. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [News of Higher Educational Institutions. Electronics], 2004, no. 6, pp. 3–9. (In Russian)
  11. Gromov, D.G., Mochalov, A.I., Sulimin, A.D., Shevyakov, V.I. Metallization of ultra-large integrated circuits. BINOM. Laboratoriya znaniy, Moscow, 2009. (In Russian)
  12. Patent RU 2420827. Manufacturing method of multi-level copper metallisation of VLSIC / Krasnikov, G.Ya., Valeev, A.S., Shelepin, N.A., Gushchin, O.P., Vorotilov, K.A., Vasiliev, V.A., Averkin, S.N. Ann. 11.01.2010. Publ. 10.06.2011. Bull. no. 16. (In Russian)
  13. Stoyanov, A.A., Zenin, V.V., Novokreschenova, E.P., Gribanov, M.A. Assembly of microelectronics products using metallization and copper wire. Vestnik VGTU [Bulletin of VSTU], 2014, vol. 10, no. 5-1, pp. 98–104. (In Russian)
  14. Shilyaeva, Yu.I., Bardushkin, V.V., Gavrilov, S.A., Silibin, M.V., Yakovlev, V.B., Borgardt, N.I., Volkov, R.L., Smirnov, D.I. About the prediction of melting temperature of metal nanowires electrochemically deposited into the pores of anodic aluminum oxide. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2014, no. 3, pp. 84–94. (In Russian)
  15. Bardushkin, V.V., Kirillov, D.A., Shilyaeva, Yu.I., Gavrilov, S.A., Yakovlev, V.B., Silibin, M.V. Effect of the thermoelastic properties of components on the melting point of filamentary nanoparticles of Cu, Ag, and Au in the matrix of anodic Al2O3. Russian Journal of Physical Chemistry A, 2017, vol. 91, no. 6, pp. 1099–1104. DOI: 10.1134/S0036024417060036 (In Russian)
  16. Bardushkin, V.V., Yakovlev, V.B., Kochetygov, A.A., Petrov, N.I. Stressed state of matrix structures in the conditions of exposure to thermodynamic factors. Elektronnaya tekhnika. Seriya 3. Mikroelektronika [Electronic Technology. Series 3. Microelectronics], 2019, no. 1, pp. 61–66. (In Russian)
  17. Kolesnikov, V.I., Yakovlev, V.B., Bardushkin, V.V., Sychev, A.P. On the prediction of local elastic fields' distributions in non-uniform media on the basis of a generalized singular approximation. Vestnik Yuzhnogo nauchnogo tsentra RAN [Bulletin of the Southern Scientific Center of the Russian Academy of Sciences], 2015, vol. 11, no 3, pp. 11–17. (In Russian)
  18. Shermergor, T.D. Micromechanics of inhomogeneous medium. Nauka, Moscow, 1977. (In Russian)
  19. Khoroshun, L.P., Maslov, B.P., Leshchenko, P.V. Predicting of the effective properties of piezoelectric composite materials. Naukova Dumka, Kiev, 1989. (In Russian)
  20. Grigor'ev, I.S., Meilikhov, E.Z. (eds.) Physical Quantities: A Handbook. Energoatomizdat, Moscow, 1991. (In Russian)
  21. Demenko, V.F. Tables of mechanical properties of structural materials. KhAI Publ., Khar'kov, 2014. (In Russian)

Issue

Section

Mechanics

Pages

16-22

Submitted

2019-08-28

Published

2019-09-30

How to Cite

Bardushkin V.V., Kolesnikov V.I., Kochetygov A.A., Sychev A.P., Yakovlev V.B. Influence of composition, thermoelastic characteristics and concentration of components on average stresses in matrix composites reinforced by oriented fibers. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 3, pp. 16-22. DOI: https://doi.org/10.31429/vestnik-16-3-16-22 (In Russian)