Development of a physically based model of ultrasonic wave propagation in concrete with a partially degraded surface layer

Authors

UDC

534.222

EDN

PMFHXK

DOI:

10.31429/vestnik-22-4-45-55

Abstract

This paper presents a numerical model of ultrasonic wave propagation in concrete with a degraded surface layer, developed using the COMSOL Multiphysics package. The model takes into account the gradient distribution of elastic properties and frequency-dependent attenuation, reflecting the material degradation process. Excitation was specified by a wave packet, and weak-reflection boundary conditions minimized reflections. Simulations were conducted at 100 kHz for various thicknesses of the degraded layer. It was shown that increasing its thickness leads to a decrease in velocity and an increase in attenuation of the wave amplitude, which is consistent with experimental studies. The novelty lies in the creation of a physically based model of concrete with a property gradient, applicable for generating synthetic data for training artificial intelligence systems for non-destructive testing.

Keywords:

non-destructive testing, concrete, ultrasonic waves, finite element modeling, comsol multiphysics, elastic gradient

Funding information

This publication was prepared within the framework of the State Assignment of the Southern Scientific Center of the Russian Academy of Sciences (SSC RAS) No. 125011200151-9. The part of Evgeniya Kirillova in these research was funded by the grant 40170233 of the RheinMain University of Applied Sciences, Wiesbaden, Germany. The work was performed using equipment at the SSC RAS Common Use Center No. 501994.

Authors info

  • Valery A. Chebanenko

    канд. физ.-мат. наук, старший научный сотрудник лаборатории динамики неоднородных структур Южного научного центра РАН

  • Sergei N. Shevtsov

    д-р техн. наук, профессор, главный научый сотрудник, заведующий лабораторией динамики неоднородных структур Южного научного центра РАН

  • Evgeniya V. Kirillova

    канд. физ.-мат. наук, профессор Университета прикладных наук Рейн-Майн в г. Висбаден

References

  1. Aparicio Secanellas, S., Liébana Gallego, J.C., Anaya Catalán, G., Martín Navarro, R., Ortega Heras, J., García Izquierdo, M.Á., González Hernández, M., Anaya Velayos, J.J., An ultrasonic tomography system for the inspection of columns in architectural heritage. Sensors, 2022, vol. 22, iss. 17, p. 6646. DOI: 10.3390/s22176646
  2. Lencis, U., Udris, A., Kara De Maeijer, P., Korjakins, A., Methodology for determining the correct ultrasonic pulse velocity in concrete. Buildings, 2024, vol. 14, no. 3, p. 720. DOI: 10.3390/buildings14030720
  3. Vasanelli, E., Di Gennaro, D., Sticchi, M., Blasi, G., Capozzoli, L., Comparison of pulse-echo tomography and through-transmission ultrasonic test for UPV characterization of building materials. Infrastructures, 2025, vol. 10, p. 162. DOI: 10.3390/infrastructures10070162
  4. Al-Neshawy, F., Ferreira, M., Puttonen, J., NDT assessment of a thick-walled reinforced concrete mock-up of NPP concrete structures. EJ. Nondestruct. Test., 2022, vol. 27, pp. 1–10. DOI: 10.58286/27190
  5. Rucka, M., Zielińska, M., Autonomous ultrasonic imaging and crack localisation in concrete beams during the fracture process. Mechanical Systems and Signal Processing, 2025, vol. 237, p. 113105. DOI: 10.1016/j.ymssp.2025.113105
  6. Malikov, A.K.u., Flores Cuenca, M.F., Kim, B., Cho Y., Kim Y.H., Ultrasonic tomography imaging enhancement approach based on deep convolutional neural networks. Journal of Visualization, 2023, vol. 26, iss. 5, pp. 1067–1083. DOI: 10.1007/s12650-023-00922-6
  7. Dinh, K., Tran, K., Gucunski, N., Ferraro, C.C., Nguyen, T., Imaging concrete structures with ultrasonic shear waves–-Technology development and demonstration of capabilities. Infrastructures, 2023, vol. 8, iss. 3, p. 53. DOI: 10.3390/infrastructures8030053
  8. Feller, V., Mielentz, F., Klewe, T., Krause, M., Orglmeister, R., Pflugradt, M., Ultrasonic phased array for investigations of concrete components. In Proc. of NDT-CE 2015 – Int. symposium non-destructive testing in civil engineering. Technische Universität Berlin/Bundesanstalt für Materialforschung und-prüfung, 2015, pp. 1–5.
  9. Larose, E., de Rosny, J., Margerin, L., Anache, D., Gouedard, P., Campillo, M., van Tiggelen, B., Observation of multiple scattering of kHz vibrations in a concrete structure and application to monitoring weak changes. Physical Review E–-Statistical, Nonlinear, and Soft Matter Physics, 2006, vol. 73, iss. 1, p. 016609. DOI: 10.1103/PhysRevE.73.016609
  10. Larose, E., Hall S., Monitoring stress related velocity variation in concrete with a 2x105 relative resolution using diffuse ultrasound. The Journal of the Acoustical Society of America, 2009, vol. 125, iss. 4, p. 1853–1856. DOI: 10.1121/1.3079771
  11. Zhang, L., Jiang, Z., Jia, Sh., Xie, L., Liu, Q., Li, H., Frequency-dependent reliability of ultrasonic testing based on numerical model with consideration of coarse aggregates in concrete. Case Studies in Construction Materials, 2023, vol. 19, p. e02462. DOI: 10.1016/j.cscm.2023.e02462
  12. Mata, R., Ruiz, R.O., Nuñez E., Correlation between compressive strength of concrete and ultrasonic pulse velocity: A case of study and a new correlation method. Construction and Building Materials, 2023, vol. 369, p. 130569. DOI: 10.1016/j.conbuildmat.2023.130569
  13. Cannas, B., Carcangiu, S., Concu, G., Fanni, A., Usai, M., Numerical simulations of ultrasonic non destructive techniques of masonry buildings. In Proc. of the 2011 COMSOL Conference in Stuttgart, 2011.
  14. Jamal Mohamad, F.A., Anita, A., Ruzairi A.R., Sallehuddin, I., Juliza J., Noorhazirah, S., The identification of optimal frequency for ultrasonic transducers in concrete-defect detection using COMSOL® simulator. ELEKTRIKA – Journal of Electrical Engineering, 2025, vol. 24, iss. 2, pp. 104–110. DOI: 10.11113/elektrika.v24n2.589
  15. Jain, H., Patankar, V.H., Simulations and experimentation of ultrasonic wave propagation and flaw characterisation for underwater concrete structures. Nondestructive Testing and Evaluation, 2024, vol. 39, iss. 6, pp. 1581–1598. DOI: 10.1080/10589759.2023.2274006
  16. Marković, N., Stojić, D., Cvetković, R., Radojičić, V., Conić Stefan Numerical modeling of ultrasonic wave propagation-by using of explicit fem in abaqus. Facta universitatis-series: Architecture and Civil Engineering, 2018, vol. 16, iss. 1, pp. 135–147. DOI: 10.2298/FUACE170830011M
  17. Zhang, W., Yang, J., Ren, L., Dou, H., Chen, X., Jia, H., Mao, Y., Zhang, J., Xu, W., Zhou, H., Mu, X., High-performance capacitive ultrasonic transducer for non-destructive testing of concrete compressive strength. Sensors, 2025, vol. 25, iss. 16, p. 4903. DOI: 10.3390/s25164903
  18. Tian, X., Ao, J., Ma, C., Shi, J., Guo, H., A hybrid strategy two-dimensional concrete aggregate filling algorithm. Engineering Reports, 2025, vol. 7, iss. 1, p. e13029. DOI: 10.1002/eng2.13029
  19. Zhang, X., Yu, Y., Yu, Z., Qiao, F., Du, J., Yao, H., A scoping review: applications of deep learning in non-destructive building tests. Electronics, 2025, vol. 14, iss. 6, p. 1124. DOI: 10.3390/electronics14061124
  20. McKnight, S., Gareth Pierce, S., Mohseni, E., MacKinnon, C., MacLeod, C., O'Hare, T., Loukas, C., A comparison of methods for generating synthetic training data for domain adaption of deep learning models in ultrasonic non-destructive evaluation. NDT & E International, 2024, vol. 141, p. 102978. DOI: 10.1016/j.ndteint.2023.102978
  21. Jiang, J., Zhang, D., Gong, F., Zhi, D., Prediction of ultrasonic pulse velocity for cement, mortar, and concrete through a multiscale homogenization approach. Materials, 2022, vol. 15, iss. 9, p. 3241. DOI: 10.3390/ma15093241
  22. Sun, W., Hou, S., Wu, G., Wu Z., Xiong, W., Zhang, J., Phased array ultrasonic and deep learning based internal defect detection in underwater concrete bridge structures. Case Studies in Construction Materials, 2025, p. e04946. DOI: 10.1016/j.cscm.2025.e04946
  23. Kirillova, E., Tatarinov, A., Kovalenko, S., Shahmenko, G., Prediction of degradation of concrete surface layer using neural networks applied to ultrasound propagation signals. Acoustics, 2025, vol. 7, iss. 2, p. 19. DOI: 10.3390/acoustics7020019
  24. Guo, J., Sun, W., Xu, Y., Lin, W., Jing, W., Damage mechanism and modeling of concrete in freeze–thaw cycles: a review. Buildings, 2022, vol. 12, iss. 9, p. 1317. DOI: 10.3390/buildings12091317
  25. Ikumapayi, C.M., Adeniji, A.A., Obisesan, A.A., Odeyemi, O., Ajayi, J.A., Effects of carbonation on the properties of concrete. Sci. Rev., 2019, vol. 5, iss. 12, pp. 205–214. DOI: 10.32861/sr.512.205.214
  26. Tatarinov, A., Sisojevs, A., Chaplinska, A., Shahmenko, G., Kurtenoks, V., An approach for assessment of concrete deterioration by surface waves. Procedia Structural Integrity, 2022, vol. 37, pp. 453–461. DOI: 10.1016/j.prostr.2022.01.109
  27. Philippidis, T.P., Aggelis, D.G., Experimental study of wave dispersion and attenuation in concrete. Ultrasonics, 2005, vol. 43, iss. 7, pp. 584–595. DOI: 10.1016/j.ultras.2004.12.001

Downloads

Download data is not yet available.

Issue

Pages

45-55

Section

Mechanics

Dates

Submitted

October 20, 2025

Accepted

November 22, 2025

Published

December 2, 2025

How to Cite

[1]
Chebanenko, V.A., Shevtsov, S.N., Kirillova, E.V., Development of a physically based model of ultrasonic wave propagation in concrete with a partially degraded surface layer. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2025, т. 22, № 4, pp. 45–55. DOI: 10.31429/vestnik-22-4-45-55

Similar Articles

1-10 of 324

You may also start an advanced similarity search for this article.