The effectiveness of the energy method for the numerical-analytical solution of a mixed problem of elasticity theory
UDC
539.3EDN
IQLBSNDOI:
10.31429/vestnik-22-3-24-35Abstract
The process of constructing a numerical-analytical solution to the basic mixed boundary value problem of the static theory of elasticity (TE) is considered. The defining relations of a linear homogeneous isotropic elastic medium are equivalent to a system of three resolving Lame equations, each linear of the second order with respect to partial derivatives. By means of the energetic method of boundary states (MBS), by decomposing the desired state into a Fourier series according to the elements of the separable basis of the Hilbert space of states, the boundary value problem of mathematical physics is reduced to a system of linear algebraic equations (SLAE). The construction of the basis is based on a variant of the general solution of a system of elliptic type equations. Each basic state is created by using harmonic polynomials. Orthogonalization is performed by the Gram-Schmidt algorithm. The main mixed task involves dividing the body boundary into two classes. Point movements are set on one part of the border, and surface movements are set on the remaining part. The accuracy of the solution is assessed by two factors: 1) Bessel's inequality; 2) integral quadratic residual of the restored boundary state with BC. The use of both factors leads to the effect of self-sufficiency of the MBS: there is no need to compare trial solutions with reference ones based on other methods. Specific calculations have been performed for two classes of mixed tasks: 1) a bounded bicavous body (a ball with two symmetrically arranged spherical cavities. A rigid counter-displacement of the surfaces of the cavities is set, the outer boundary of the body is free from load; 2) an elastic circular cylinder is fixed with a rigid rod along part of one base. The side surface is loaded with tangential forces directed along the axis of the cylinder. In the second problem, a singular jump in the characteristics of the boundary state along the interface line belonging to the boundary of the body is tested. Numerical-analytical solutions to both problems are constructed, the fields of characteristics of stress-strain states are illustrated, comments on states are made, and conclusions are done.
Keywords:
elasticity theory, basic mixed problem, energy methods, method of boundary states, state of spaces, isomorphism of Hilbert spacesFunding information
The study did not have sponsorship.
References
- Работнов, Ю.Н., Механика деформируемого твердого тела. Москва, Наука, 1979. [Rabonov, Yu.N., Mekhanika deformiruemogo tverdogo tela = Mechanics of deformable solids. Moscow, Nauka Publ., 1979. (in Russian)]
- Лурье, А.И., Теория упругости. Москва, Наука, 1970. [Lurie, A.I., Teoriya uprugosti = Theory of elasticity. Moscow, Nauka, 1970. (in Russian)]
- Ректорис, К., Вариационные методы в математической физике и технике. Москва, Мир, 1985. [Rektoris, K., Variatsionnye metody v matematicheskoy fizike i tekhnike = Variational methods in mathematical physics and engineering. Moscow, Mir, 1985. (in Russian)]
- Пеньков, В.В., Метод граничных состояний в задачах линейной механики: дисс. ... канд. физ.-мат. наук. Тула, 2002. [Penkov, V.V., Metod granichnykh sostoyaniy v zadachakh lineynoy mekhaniki = The method of boundary states in problems of linear mechanics: diss. ... cand. phys.-math. sciences, PhD, Tula, 2002. (in Russian)]
- Харитоненко, А.А., Моделирование состояний гармонических сред: дисс. ... канд. физ.-мат. наук. Липецк, 2006. [Kharitonenko, A.A., Modelirovanie sostoyaniy garmonicheskikh sred = Modeling of the states of harmonic media: diss. ... cand. phys.-math. sciences. Lipetsk, 2006. (in Russian)]
- Саталкина, Л.В., Метод граничных состояний в задачах теории упругости неоднородных тел и термоупругости: дисс. ... канд. физ.-мат. наук. Липецк, 2010. [Satalkina, L.V., Metod granichnykh sostoyaniy v zadachakh teorii uprugosti neodnorodnykh tel i termouprugosti = The method of boundary states in problems of the theory of elasticity of inhomogeneous bodies and thermoelasticity: diss. ... cand. phys.-math. sciences. Lipetsk, 2010. (in Russian)]
- Иванычев, Д.А., Метод граничных состояний в задачах теории упругости для анизотропных сред: дисс. ... канд. физ.-мат. наук. Тула, 2010. [Ivanychev, D.A., Metod granichnykh sostoyaniy v zadachakh teorii uprugosti dlya anizotropnykh sred = The method of boundary states in problems of elasticity theory for anisotropic media: diss. ... cand. phys.-math. sciences. Tula, 2010. (in Russian)]
- Стебенев, И.Н., Метод граничных состояний в задачах теории упругости об установившихся колебаниях изотропных тел: дисс. ... канд. физ.-мат. наук. Липецк, 2003. [Stebenev, I.N., Metod granichnykh sostoyaniy v zadachakh teorii uprugosti ob ustanovivshikhsya kolebaniyakh izotropnykh tel = The method of boundary states in problems of the theory of elasticity on steady-state vibrations of isotropic bodies: diss. ... cand. phys.-math. sciences. Lipetsk, 2003. (in Russian)]
- Рязанцева, Е.А., Метод граничных состояний в задачах теории упругости с сингулярностями физического и геометрического характера: дисс. ... канд. физ.-мат. наук. Липецк, 2015. [Ryazantseva, E.A., Metod granichnykh sostoyaniy v zadachakh teorii uprugosti s singulyarnostyami fizicheskogo i geometricheskogo kharaktera = The method of boundary states in problems of the theory of elasticity with singularities of a physical and geometric nature: diss. ... cand. phys.-math. sciences. 2015. (in Russian)]
- Шульмин, А.С., Равновесие изотропного упругого пространства, содержащего полости и включения: дисс. ... канд. физ.-мат. наук. Липецк, 2014. 68 [Shulmin, A.S., Ravnovesie izotropnogo uprugogo prostranstva, soderzhashchego polosti i vklyucheniya = The equilibrium of an isotropic elastic space containing cavities and inclusions: diss. ... cand. phys.-math. sciences. Lipetsk, 2014. (in Russian)]
- Новикова, О.С., Построение полнопараметрических аналитических решений задач теории упругости на основе метода граничных состояний: дисс. ... канд. физ.-мат. наук. Липецк, 2019. [Novikova, O.S., Postroenie polnoparametricheskikh analiticheskikh resheniy zadach teorii uprugosti na osnove metoda granichnykh sostoyaniy = Construction of full-parametric analytical solutions to problems of elasticity theory based on the boundary state method: diss. ... cand. phys.-math. sciences. Lipetsk, 2019. (in Russian)]
- Папкович, П.Ф., Теория упругости. Москва, Оборонгиз, 1939, [Papkovich, P.F., Teoriya uprugosti = Theory of elasticity. Moscow, Oborongiz, 1939. (in Russian)]
- Аржаных, И.С., Интегральные уравнения основных задач теории поля и теории упругости. Ташкент, Изд-во АН УзбССР, 1954. [Arzhanykh, I.S., Integral'nye uravneniya osnovnykh zadach teorii polya i teorii uprugosti = Integral equations of the basic problems of field theory and elasticity theory. Tashkent, Publishing House of the Academy of Sciences of the Uzbek SSR, 1954. (in Russian)]
- Слободянский, М.Г., Общие формы решений уравнений упругости для односвязных и многосвязных областей, выраженных через гармонические функции. Прикладная математика и механика, 1954, т. 18, с. 55–74. [Slobodyansky, M.G., General forms of solutions of elasticity equations for simply connected and multiply connected regions expressed in terms of harmonic functions. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 1954, vol. 18, pp. 55–74. (in Russian)]
- Колмогоров, А.Н., Элементы теории функций и функционального анализа. Москва, ФИЗМАТЛИТ, 2004. [Kolmogorov, A.N., Elementy teorii funktsiy i funktsional'nogo analiza = Elements of the theory of functions and functional analysis. Moscow, FIZMATLIT, 2004. (in Russian)]
- Пеньков, В.Б., Левина, Л.В., Сравнительный анализ процедур ортогонализации базисов евклидовых и гильбертовых пространств. Международный журнал прикладных и фундаментальных исследований, 2020, № 3, с. 103–107. [Penkov, V.B., Levina, L.V., Comparative analysis of orthogonalization procedures for bases of Euclidean and Hilbert spaces. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy = International Journal of Applied and Fundamental Research, 2020, no. 3, pp. 103–107. (in Russian)]
- Пеньков, В.Б., Саталкина, Л.В., Шульмин, А.С., Применение метода граничных состояний для анализа упругой среды с полостями и включениями. Прикладная математика и механика, 2014, т. 78, вып. 4, с. 1–15. [Penkov, V.B., Satalkina, L.V., Shulmin, A.S., Application of the boundary state method for the analysis of elastic media with cavities and inclusions. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 2014, vol. 78, iss. 4, pp. 1–15. (in Russian)]
- Мусхелишвили, Н.И., Некоторые основные задачи математической теории упругости. Москва, Наука, 1966. [Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti = Some basic problems of the mathematical theory of elasticity. Moscow, Nauka, 1966. (in Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Пеньков В.Б., Левина Л.В., Крупнов А.И., Черкивский М.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.