Numerical finding of border separating limited and overlimiting currents in a semiconducting electric membrane

Authors

  • Kiriy V.A. Kuban State University, Krasnodar, Russian Federation
  • Khasmatulina N.Yu. Kuban State University, Krasnodar, Russian Federation
  • Demekhin E.A. Kuban State University, Krasnodar, Russian Federation

UDC

532.517.013.4:537.2

Abstract

One of the possible physical mechanisms of transition from limited to overlimiting currents in the electrolyte located between two electric membranes considered from theoretical point of view. This mechanism can be named electrokinetic instability. The boundary separating the limited and overlimiting modes is found numerically, according to the stability or instability of one-dimensional state of equilibrium. We can find the conclusion to develop new numerical method of solving the problem. Finding of the nonequilibrium one-dimensional equilibrium state as well as its research on stability is conducted numerically using $\tau$-version of Galerkin's method. The system of Chebyshev's polynomials is used as a complete system of basis functions. Boundary eigenvalue problem is described by linearized system of ordinary differential Nernst-Planck-Poisson-Stokes equations with the appropriate boundary conditions, which is reduced to generalized algebraic eigenvalue problem after projection on the basis functions: $\text{det}(A+\lambda B)=0$, where $A$, $B$ - the complex matrixes, $\lambda$ - eigenvalues. If the real part of at least one eigenvalue of discrete spectrum is positive, then one-dimensional equilibrium position corresponding to the limited currents is unstable, the regime changes and the transition to overlimiting currents takes place. Physically, by this transition two ion transport mechanism, diffusion and electromigration, are complemented by the third mechanism - advection. Numerical data of the work is well corresponded to the results obtained analytically for small Debye numbers.

Keywords:

numerical simulation, overlimiting currents, electrokinetic instability

Funding information

Работа была частично финансирована грантами РФФИ (12-08-00924-а, 14-08-00789-а и 14-08-01171-а).

Author info

  • Vladimir A. Kiriy

    аспирант кафедры вычислительной математики и информатики Кубанского государственного университета

  • Natalya Yu. Khasmatulina

    магистрант факультета компьютерных технологий и прикладной математики Кубанского государственного университета

  • Evgeniy A. Demekhin

    д-р физ.-мат. наук, профессор кафедры вычислительной математики и информатики Кубанского государственного университета

References

  1. Левич В.Г. Физико-химическая гидродинамика. М.: Физматлит, 1959. 316 c. [Levich V.G. Physicochemical hydrodynamics. Englewood Cliffs, Prentice Hall, 1962, 700 p.]
  2. Rubinstein I., Shtilman L. Voltage against current curves of cation exchange membranes // J. Chem. Soc. Faraday Trans. II. 1979. No 75. P. 231-246.
  3. Заболоцкий И.И., Никоненко В.В. Перенос ионов в мембранах. М.: Наука, 1996. 392 c. [Zabolotsky I.I., Niconenko V.V. Perenos ionov v membrane [Ion's transport in membrane]. Moscow, Nauka Publ., 1996, 392 p. (In Russian)]
  4. Уртенов М.Х., Сеидов Р.Р. Математические модели электромембранных систем очистки воды. Краснодар: КубГУ, 2000. 140 c. [Urtenov M.H., Seidov R.R. Matematicheskie modeli elektromembrannyh sistem ochistki vody [Mathematical models of electomembrane systems of water purification]. Krasnodar, KubSU Publ., 2000, 140 p. (In Russian)]
  5. Уртенов М.Х., Никоненко В.В. Анализ решения краевой задачи для уравнений Нернста-Планка-Пуассона: Случай 1:1 электролита // Электрохимия. 1993. Т. 29. №2. С. 239-245. [Urtenov M.H., Niconenko V.V. Analiz reshenija kraevoj zadachi dlja uravnenij Nernsta-Planka-Puassona: Sluchaj 1:1 elektrolita [The analysis of the solution of boundary problem for Nernst-Planck-Poisson equations: case of 1:1 electrolyte]. Electrohimia [Eclectrochemistry], 1993, vol. 29, no. 2, pp. 239-245. (In Russian)]
  6. Nikonenko V.V., Kovalenko A., Urtenov M.H., Pismenskaya N.D., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives // Desalination. 2014. No 342. P. 85-106.
  7. Rubinstein S.M., Manukyan G., Staicu A., Rubinstein I., Zaltman B., Lammertink R.G.H., Nagele F., Wessling M. Direct observation of nonequilibrium electroosmotic instability // Phys. Rev. Lett. 2008. No. 101. P. 236101.
  8. Zaltzman B., Rubinstein I. Electroosmotic slip and electroconvective instability // Fluid Mech. 2007. No 579. p. 173-226.
  9. Demekhin E.A., Shelistov V.S., Polyanskikh S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability // Phys. Rev. E. 2011. No 84. P. 036318.
  10. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. No 44. P. 401-426.

Downloads

Download data is not yet available.

Issue

Pages

31-37

Section

Article

Dates

Submitted

September 4, 2014

Accepted

September 7, 2014

Published

September 29, 2014

How to Cite

[1]
Kiriy, V.A., Khasmatulina, N.Y., Demekhin, E.A., Numerical finding of border separating limited and overlimiting currents in a semiconducting electric membrane. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, № 3, pp. 31–37.

Similar Articles

1-10 of 143

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)