Stability of Gram-Schmidt orthogonalization and the way of its increase

Authors

  • Babenko V.N. Krasnodar Higher Military Aviation School for Pilots, Krasnodar, Russian Federation

UDC

519.61

EDN

TBHWYB

Abstract

The orthogonal methods used when solving the system of the linear equations, are more stable. However the experience of use of the programs realizing these methods, has shown, that Gram-Schmidt and Lanczos orthogonalization methods can demonstrate the results of unacceptable accuracy. While transformational methods (methods of rotations and reflections) give reliable calculations of high accuracy when solving the same problems. For the specified reasons in methods of simplification of the form of matrixes (including in QR-decomposition) users began to prefer transformations of Hausholder reflection and Jacobi rotation (Hivens). In this article under the example of QR-decomposition the nature of instability of Gram-Schmidt orthogonalization is revealed. This decomposition is chosen to simplify the statement of essence of the phenomenon what does not break the commonality of research. To diminish the influence of the revealed lack it is offered to use procedure of bidimentional orthonormalizational basis construction. The executed tests have shown the efficiency of application of the specified procedure.

Keywords:

Gram-Schmidt orthogonalization, QR-decomposition, reorthogonalization, condition number, linear variety, machine number, computational error

Author info

  • Viktor N. Babenko

    канд. физ.-мат. наук, доцент кафедры математики Краснодарского высшего военного авиационного училища летчиков

References

  1. Икрамов Х.Д. Несимметрическая проблема собственных значений. М.: Наука, 1991, 240 с. [Ikramov H.D. Nesimmetricheskaya problema sobstvennykh znacheniy [Non-symmetric eigenvalue problem]. Moscow, Nauka Publ., 1991, 240 p. (In Russian)]
  2. Беклемишев Д.В. Дополнительные главы линейной алгебры. М.: Наука,1983, 335 с. [Beklemishev D.V. Dopolnitel'nye glavy lineynoy algebry [Additional chapters of linear algebra]. Moscow, Nauka Publ., 1983, 335 p. (In Russian)]
  3. Бабенко В.Н. Алгоритм изменения индекса произведения отражений Хаусхолдера // Сиб. матем. журнал. Т. 32, № 5, Деп. в ВИНИТИ за № 5350-В90. 59 с. [Babenko V.N. Algoritm izmeneniya indeksa proizvedeniya otrazheniy Khauskholdera [The algorithm works by changing the index of Householder reflections]. Sibirskiy matematicheskiy zhurnal [Siberian Mathematical Journal], vol. 32, no. 5, 59 p. (In Russian)]
  4. Годунов С.К. Решение систем линейных уравнений. Новосибирск: Наука, 1980. 177 с. [Godunov S.K. Reshenie sistem lineynykh uravneniy [Solution of systems of linear equations]. Novosibirsk, Nauka Publ., 1980, 177 p. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

7-12

Section

Article

Dates

Submitted

October 22, 2014

Accepted

November 8, 2014

Published

December 22, 2014

How to Cite

[1]
Babenko, V.N., Stability of Gram-Schmidt orthogonalization and the way of its increase. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, № 4, pp. 7–12.

Similar Articles

1-10 of 68

You may also start an advanced similarity search for this article.