Modeling of a spherical microgranule's motion in a strong electric field

Authors

  • Kutsepalov A.S. Kuban State University, Krasnodar, Russian Federation
  • Shelistov V.S. Kuban State University, Krasnodar, Russian Federation
  • Frantz E.A. Kuban State University, Krasnodar, Russian Federation
  • Demekhin E.A. Kuban State University, Krasnodar, Russian Federation

UDC

532.516; 544.6

EDN

TKVQVH

Abstract

The motion of a microgranule, impermeable for anions, suspended in an electrolyte, under electrophoresis of the first and second kind is investigated in the paper. Mathematical model of such a movement is described by the system of Nernst-Planck-Poisson-Stokes equations in spherical coordinates with boundary conditions on the granule's surface and in the infinitely distant area. Besides, the system's behavior is described by four dimensionless parameters. In order to solve this problem, a stream function is introduced. The algorithm of the solution is based on eigenfunction expansion (those are Gegenbauer and Legendre polynomials) and Fourier transform on the corresponding functions. The algorithm uses a second-order central finite-difference scheme over a nonuniform grid and a semi-implicit third-order Runge-Kutta method. Our numerical simulation has shown a good correspondence with experimental data, particularly for the velocity dependence on the strength of the electric field and for determination of characteristic zones of the problem. It should be noted that the calculations take into account the influence of both the double electric layer and electroconvection. Determination of the conditions (i.e. the values of parameters) when the regime loses stability is our main result; the instability results in electrokinetic vortex formation both behind and in front of the microgranule.

Keywords:

electrophoresis, microparticle, electrolyte, Nernst-Planck-Poisson-Stokes equation system, numerical simulation

Funding information

Работа выполнена при поддержке РФФИ (13-08-96536-р_юг_а, 14-08-00789-а, 14-08-01171-а) и администрации Краснодарского края (13-08-96536-р_юг_а).

Authors info

  • Aleksandr S. Kutsepalov

    аспирант кафедры вычислительной математики и информатики Кубанского государственного университета

  • Vladimir S. Shelistov

    канд. физ.-мат. наук, научный сотрудник научно-исследовательской части Кубанского государственного университета

  • Elizaveta A. Frantz

    магистрант кафедры математического моделирования Кубанского государственного университета

  • Evgeniy A. Demekhin

    д-р физ.-мат. наук, профессор кафедры вычислительной математики и информатики Кубанского государственного университета

References

  1. Dukhin S.S. Electrokinetic phenomena of second kind and their applications // Adv. Colloid Interface Sci. 1991. Vol. 35. Pp. 173-196.
  2. Mishchuk N.A. Electroosmosis of the second kind // Colloids and Surfaces A. 1995. Vol. 95. Pp. 119-131.
  3. Baran A.A., Mishchuk N.A., Prieve D.C. Superfast electrophoresis of conducting dispersed particles // J. Colloid Interface Sci. 1998. Vol. 207. Pp. 240-250.
  4. Mishchuk N.A., Dukhin S.S. Electrokinetic Phenomena of the Second Kind. In: Delgado A., Decker M. (eds.) Interfacial Electrokinetics and Electrophoresis, New York/Basel, 2002. P. 241-275.
  5. Ben Y., Chang H.-C. Nonlinear Smoluchowski slip velocity and micro-vortex generation // J. Fluid Film. 2002. Vol. 461. Pp. 229-238.
  6. Ben Y., Demekhin E.A., Chang H.-C. Nonlinear electrokinetics and "superfast" electrophoresis // J. Colloid Interface Sci. 2004. Vol. 276. Pp. 483-497.
  7. Уртенов М.Х. Краевые задачи для систем уравнений Нернста-Планка-Пуассона (факторизация, декомпозиция, модели, численный анализ). Краснодар: Кубанский государственный университет, 1998. 126 с. [Urtenov M.Kh. Kraevye zadachi dlya sistem uravneniy Nernsta-Planka-Puassona (faktorizaciya, dekompoziciya, modeli, chislenniy analiz) [Boundary-value problems for Nernst-Planck-Poisson systems of equations (factorization, decomposition, models, numerical analysis)]. Krasnodar, Kuban State University, 1998, 126 p. (In Russian)]
  8. Urtenov M.A.Kh. Decoupling of the Nernst-Planck and Poisson equations // J. Phys. Chem. 2007. V. 111. Pp. 14208-14222.
  9. Заболоцкий В.И., Никоненко В.В. Перенос ионов в мембранах. М.: Наука, 1996. 392 с. [Zabolotskiy V.I., Nikonenko V.V. Perenos ionov v membranah [Ion transfer in membranes]. Moscow, Nauka Publ., 1996, 392 pp. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

63-69

Section

Article

Dates

Submitted

December 11, 2014

Accepted

December 31, 2014

Published

March 26, 2015

How to Cite

[1]
Kutsepalov, A.S., Shelistov, V.S., Frantz, E.A., Demekhin, E.A., Modeling of a spherical microgranule’s motion in a strong electric field. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, № 1, pp. 63–69.

Similar Articles

1-10 of 374

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)