The some results of investigations of corrugated shells stability

Authors

  • Makarov S.I. South Federal University, Rostov-on-Don, Russian Federation
  • Ustinov Yu.A. South Federal University, Rostov-on-Don, Russian Federation

UDC

539.3

EDN

TWTYOB

Abstract

The thin revolution shell of corrugated by forming was selected as the object of the study. The new form of the equilibrium equations of revolution shells was obtained in the theory of Kirchhoff-Love's. The stability of axisymmetric equilibrium state is investigated on basis of the perturbation theory methods. At the ends of the shell is performed the hinge resistance, external and internal hydrostatic pressure is considered as the external load. A new, in this class of problems, the method based on the theory of Floquet-Lyapunov to determine the critical value of the load at which the axisymmetric stress-strain state loses stability was developed. The influence of the kind of "edge effect" on the critical values of the external load was carried out. In addition to the proposed method, the method of initial parameters to study the stability is used. The comparison of the obtained results using these two methods was conducted. Forms of stability loss for the two types of shells of revolution was constructed.

Keywords:

shell of revolution, corrugated shell, stability of equilibrium, form of stability loss, critical load, method of Floquet-Lyapunov

Funding information

Работа выполнена в рамках проектной части Государственного задания (9.665.2014.К) в сфере научной деятельности.

Authors info

  • Sergey I. Makarov

    аспирант кафедры теории упругости Южного федерального университета

  • Yuriy A. Ustinov

    д-р физ.-мат. наук, профессор кафедры теории упругости Южного федерального университета, главный научн сотрудник Южного математического института Владикавказского научного центра РАН

References

  1. Ворович И.И. Математические проблемы нелинейной теории пологих оболочек. М.: Наука, 1989. 373 c. [Vorovich I.I. Matematicheskie problemy nelineynoy teorii pologikh obolochek [Mathematical problems of the nonlinear theory of shallow shells]. Moscow, Nauka Publ., 1989, 373 p.]
  2. Гетман И.П., Карякин М.И., Устинов Ю.А. Анализ нелинейного поведения круглых мембран с произвольным профилем по радиусу // ПММ. 2010. Т. 74. Вып. 6. С. 917-927. [Getman I.P., Karyakin M.I., Ustinov Y.A. Analiz nelineynogo povedeniya kruglykh membran s proizvol'nym profilem po radiusu [Analysis of the non-linear behaviour of circular membranes with an arbitrary radial profile]. Prikladnaya matematika i mekhanika [Journal of Applied Mathematics and Mechanics], 2010, vol. 74, no. 6, pp. 917-927.]
  3. Валишвили Н.В. Методы расчета оболочек вращения на ЭЦВМ. М.: Машиностроение, 1976. 278 c. [Valishvili N.V. Metody rascheta obolochek vrashcheniya na ETsVM [Methods of calculation revolution shells on EDCM]. Moscow, Mashinostroenie Publ., 1976, 278 p.]
  4. Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967. 472 c. [Demidovich B.P. Lektsii po matematicheskoy teorii ustoychivosti [Lectures on mathematical stability theory]. Moscow, Nauka Publ., 1967, 472 p.]
  5. Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. М.: Наука ГРФМЛ, 1972. 718 c. [Jakubovich V.A., Starjinskii V.M. Lineynye differentsial'nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya [Linear differential equations with periodic coefficients and their applications]. Moscow, Nauka GRFML Publ., 1972, 718 p.]

Downloads

Download data is not yet available.

Issue

Pages

65-70

Section

Article

Dates

Submitted

June 10, 2015

Accepted

June 16, 2015

Published

June 25, 2015

How to Cite

[1]
Makarov, S.I., Ustinov, Y.A., The some results of investigations of corrugated shells stability. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, № 2, pp. 65–70.

Similar Articles

1-10 of 445

You may also start an advanced similarity search for this article.