The some results of investigations of corrugated shells stability
UDC
539.3EDN
TWTYOBAbstract
The thin revolution shell of corrugated by forming was selected as the object of the study. The new form of the equilibrium equations of revolution shells was obtained in the theory of Kirchhoff-Love's. The stability of axisymmetric equilibrium state is investigated on basis of the perturbation theory methods. At the ends of the shell is performed the hinge resistance, external and internal hydrostatic pressure is considered as the external load. A new, in this class of problems, the method based on the theory of Floquet-Lyapunov to determine the critical value of the load at which the axisymmetric stress-strain state loses stability was developed. The influence of the kind of "edge effect" on the critical values of the external load was carried out. In addition to the proposed method, the method of initial parameters to study the stability is used. The comparison of the obtained results using these two methods was conducted. Forms of stability loss for the two types of shells of revolution was constructed.
Keywords:
shell of revolution, corrugated shell, stability of equilibrium, form of stability loss, critical load, method of Floquet-LyapunovFunding information
Работа выполнена в рамках проектной части Государственного задания (9.665.2014.К) в сфере научной деятельности.
References
- Ворович И.И. Математические проблемы нелинейной теории пологих оболочек. М.: Наука, 1989. 373 c. [Vorovich I.I. Matematicheskie problemy nelineynoy teorii pologikh obolochek [Mathematical problems of the nonlinear theory of shallow shells]. Moscow, Nauka Publ., 1989, 373 p.]
- Гетман И.П., Карякин М.И., Устинов Ю.А. Анализ нелинейного поведения круглых мембран с произвольным профилем по радиусу // ПММ. 2010. Т. 74. Вып. 6. С. 917-927. [Getman I.P., Karyakin M.I., Ustinov Y.A. Analiz nelineynogo povedeniya kruglykh membran s proizvol'nym profilem po radiusu [Analysis of the non-linear behaviour of circular membranes with an arbitrary radial profile]. Prikladnaya matematika i mekhanika [Journal of Applied Mathematics and Mechanics], 2010, vol. 74, no. 6, pp. 917-927.]
- Валишвили Н.В. Методы расчета оболочек вращения на ЭЦВМ. М.: Машиностроение, 1976. 278 c. [Valishvili N.V. Metody rascheta obolochek vrashcheniya na ETsVM [Methods of calculation revolution shells on EDCM]. Moscow, Mashinostroenie Publ., 1976, 278 p.]
- Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967. 472 c. [Demidovich B.P. Lektsii po matematicheskoy teorii ustoychivosti [Lectures on mathematical stability theory]. Moscow, Nauka Publ., 1967, 472 p.]
- Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. М.: Наука ГРФМЛ, 1972. 718 c. [Jakubovich V.A., Starjinskii V.M. Lineynye differentsial'nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya [Linear differential equations with periodic coefficients and their applications]. Moscow, Nauka GRFML Publ., 1972, 718 p.]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2015 Макаров С.С., Устинов Ю.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.