Thermo-gravitational boundary layer near the free surface of inhomogeneous fluid

Authors

  • Batishchev V.A. Southern Federal University, Rostov-on-Don, Russian Federation

UDC

536.22

Abstract

We study a steady axially-symmetric thermogravitational flow of an inhomogeneous fluid in the horizontal layer caused by an uneven heating of the free boundary. Asymptotic expansions of boundary value problem solutions are constructed for the equations of motion in Oberbeck-Boussinesq approximation at small diffusion coefficients of viscosity and thermal conductivity. We obtained a self-similar solution when the free boundary temperature depends on the radial coordinate by the square law. The principal member of asymptotic expansions describes a non-linear thermogravitational boundary layer near the free surface. Thermocapillary effect is not taken into account. We analyzed two cases. In the first case the boundary layer induces itself by the external flow. In the second case the external flow is set, where the speed order in the boundary layer and outside the layer is equal. We calculated two types of modes near the axis of symmetry - basic and rotational. Basic modes describe fluid flow without rotation. We constructed asymptotic formulae for these modes at small temperature gradient values defined along the free boundary. The rotational modes are due to the bifurcation of the basic modes. The rotational modes have current and countercurrent flotation zones near the free boundary. According to the parameters of the problem the temperature in the boundary layer is either monotonic or has one or two points of the local extremum. When the free boundary is heated, there is only one basic mode near the axis of symmetry. When it is cooled, there are either two basic or two rotational modes. Basic modes exist only if the external flow rate exceeds a critical value. There are only rotating modes when the speed does not exceed this value. At the fluid rotation the heat flow in the boundary layer is directed towards the axis of symmetry. The fluid rotation is absent outside the boundary layer.

Keywords:

Oberbeck-Boussinesq approximation, free surface, boundary layer, rotation, bifurcation

Author Biography

  • Vladimir A. Batishchev

    д-р физ.-мат. наук, профессор кафедры теоретической и компьютерной гидродинамики Южного федерального университета

References

  1. Napolitano L.G. Marangoni boundary layers // Proc. III European Symp. on Material Sci. in Space. Grenoble. 1979. P. 313-315.
  2. Пухначев В.В. Групповой анализ уравнений нестационарного пограничного слоя Марангони // ДАН СССР. 1984. Т. 279. № 5. C. 1061-1064. [Pukhnachev V.V. Gruppovoi analiz uravnenii nestatsionarnogo pogranichnogo sloya Marangoni [Group analysis of unsteady boundary layer equations of Marangoni]. Dokladi AN SSSR [Rep. of the USSR Academy of Sciences], 1984, vol. 279, no.5, pp. 1061-1064. (In Russian)]
  3. Шкадов В.Я. К образованию волн на поверхности вязкой тяжелой жидкости под действием касательного напряжения // Изв. АН СССР. Механика жидкости и газа. 1970. № 3. С. 133-137. [Shkadov V.Ya. K obrazovaniyu voln na poverkhnosti vyazkoi tyazheloi zhidkosti pod deistviem kasatel'nogo napryazheniya [To the formation of waves on the surface of heavy viscous fluid under shear stress]. Izv. AN SSSR. Mekhanika zhidkosti i gaza [Fluid Dynamics], 1970, no. 3, pp. 133-137. (In Russian)]
  4. Батищев В.А., Хорошунова Е.В. Возникновение вращательных режимов при термокапиллярном течении неоднородной жидкости в слое // Прикладная математика и механика. 2000. Т. 64. Вып. 4. С. 560-568. [Batishchev V.A., Khoroshunova E.V. Vozniknovenie vrashchatel'nykh rezhimov pri termokapillyarnom techenii neodnorodnoi zhidkosti v sloe [The formation of rotational regimes in the thermocapillary flow of a non-uniform fluid in a layer]. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 2000, vol. 64, no. 4, pp. 560-568. (In Russian)]
  5. Батищев В.А. Автомодельные решения, описывающие нестационарные термокапиллярные течения жидкости // Прикладная математика и механика. 1995. Т. 59. Вып. 6. С. 1003-1009. [Batishchev V.A. Avtomodel'nye resheniya, opisyvayushchie nestatsionarnye termokapillyarnye techeniya zhidkosti [Self-similar solutions describing unsteady thermocapillary flow of the liquid]. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 1995, vol. 59, no. 6, pp. 1003-1009. (In Russian)]
  6. Батищев В.А. Ветвление автомодельных решений, описывающих термокапиллярные течения жидкости в тонком слое // Прикладная механика и техническая физика. 1999. Т. 40. № 3. С. 137-143. [Batishchev V.A. Vetvlenie avtomodel'nykh reshenii, opisyvayushchikh termokapillyarnye techeniya zhidkosti v tonkom sloe [The branching self-similar solutions describing a thermocapillary flow in a thin layer]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied mechanics and technical physics], 1999, vol. 40, no. 3, pp. 137-143. (In Russian)]
  7. Батищев В.А. Асимптотика неравномерно нагретой свободной границы капиллярной жидкости при больших числах Марангони // Прикладная математика и механика. 1989. Т. 53. Вып. 3. С. 425-432. [Batishchev V.A. Asimptotika neravnomerno nagretoi svobodnoi granitsy kapillyarnoi zhidkosti pri bol'shikh chislakh Marangoni [Asymptotics of non-uniformly heated capillary free boundary fluid at high Marangoni numbers]. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 1989, vol. 53, no. 3, pp. 425-432. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

25-32

Section

Article

Dates

Submitted

February 29, 2016

Accepted

March 9, 2016

Published

March 22, 2016

How to Cite

[1]
Batishchev, V.A., Thermo-gravitational boundary layer near the free surface of inhomogeneous fluid. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, № 1, pp. 25–32.

Similar Articles

1-10 of 110

You may also start an advanced similarity search for this article.