Mathematical modeling of electrodynamics of bipolar membranes with water dissociation and chemical reaction of ionizable groups

Authors

  • Demekhin E.A. Financial University under the Government of the Russian Federation, Krasnodar, Russian Federation
  • Morshneva I.V. Southern Federal University, Rostov-on-Don, Russian Federation
  • Kalaydin E.N. Kuban State University, Krasnodar, Russian Federation

UDC

519.63:[537.29:538.93+544.6.018.4]

EDN

XECYVP

Abstract

The microscale electrolyte behavior both near and inside the bipolar ion-selective electric membrane in microscales under an external normal to the membrane surface electric field is scrutinized. Bipolar membrane is a combination of cation-exchange and anion-exchange membranes. Strong electric field in the junction between membranes leads to more intensive than in the monopolar membranes water dissociation process, that is why the bipolar membranes are widely used in the chemical industry. For investigation of aforementioned phenomena the three-layer system electrolyte-membrane-electrolyte is considered. The base of the mathematical model is the Nernst-Planck-Poisson system of nonlinear equations and an extra transport equations for ions of dissociated water with a source terms are added to the basic system of equations. It is found numerically that the maximal dissociation takes place within the junction between membranes. The flux of water ions not only enhances the total electric current through the system, but also leads to an exaltation effect. Taking into account the second Wien effect allows to explain the transition to the overlimiting mode in the system, which has been observed during the experiments.

Keywords:

microfluidics, bipolar membrane, Nernst-Plank-Poisson system, second Wien effect, numerical solution

Funding information

Работа выполнена при финансовой поддержке РФФИ (14-08-00789 а, 16-48-230107 р_а.)

Authors info

  • Evgeniy A. Demekhin

    д-р физ.-мат. наук, профессор кафедры математики и информатики Финансового университета при Правительстве Российской Федерации

  • Irina V. Morshneva

    канд. физ.-мат. наук, доцент кафедры вычислительной математики и математической физики Южного федерального университета

  • Evgeniy N. Kalaydin

    д-р физ.-мат. наук, профессор кафедры прикладной математики Кубанского государственного университета

References

  1. Frilette V.J. Preparation and characterization of bipolar ion-exchange membranes // J. Phys. Chem. 1956. Vol. 60. No 4. P. 435-439.
  2. Гребень В.П., Пивоваров Н.Я., Коварский Н.Я., Нефедова Г.З. Влияние природы ионита на физико-химические свойства биполярных ионообменных мембран // Журн. физ. Химии. 1978. Т. 52. № 10. С. 2641. [Greben' V.P., Pivovarov N.Ja., Kovarskij N.Ja., Nefedova G.Z. Vlijanie prirody ionita na fiziko-himicheskie svojstva bipoljarnyh ionoobmennyh membran [Influence of the nature of the resin on the physicochemical properties of the bipolar ion-exchange membranes]. Zhurn. fiz. himii [J. of Physical Chemistry A], 1978, vol. 52, no. 10, pp. 2641. (In Russian)]
  3. Simons R. A novel method preparing bipolar membranes // Electrochim. Acta. 1986. Vol. 31. P. 1175-1177.
  4. Тимашев С.Ф., Кирганова Е.В. О механизме электролитического разложения молекул воды в биполярных мембранах // Электрохимия. 1981. Т. 17. № 3. С. 440-443. [Timashev S.F., Kirganova E.V. O mehanizme jelektroliticheskogo razlozhenija molekul vody v bipoljarnyh membranah [On the mechanism of electrolytic decomposition of water molecules in the bipolar membranes]. Elektrokhimiya [Electrochemistry], 1981, vol. 17, no. 3, pp. 440-443. (In Russian)]
  5. Mafe S., Ramirez P., Alcaraz A. Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane // Chem. Phys. Lett. 1998. Vol. 294. No. 4-5. P. 406-412.
  6. Заболоцкий В.И., Гнусин Н.П., Шельдешов Н.В. Вольтамперные характеристики переходной области биполярной мембраны МБ-1 // Электрохимия. 1984. Т. 20. № 10. С. 1340-1345. [Zabolotsky V.I., Gnusin N.P., Sheldeshov N.V. Vol'tampernye kharakteristiki perekhodnoy oblasti bipolyarnoy membrany MB-1 [Current-voltage characteristics of the transition region of the bipolar membrane MB-1]. Elektrokhimiya [Electrochemistry], 1984, vol. 20, no. 10, pp. 1340-1345. (In Russian)]
  7. Conroy D.T., Craster R.V., Matar O.K., Cheng L.-J., and Chang H.-C. Nonequilibrium hysteresis and Wien effect water dissociation at a bipolar membrane // Phys. Rev. E. 2012. No. 86. P. 056104.
  8. Grabowski A., Zhang G., Strathmann H., Eigenberger G. Production of high-purity water by continuous electrodeionization with bipolar membranes: Influence of concentrate and protection compartment // Sep. Purif. Technol. 2008. Vol. 60. P. 86-95.
  9. Schiffbauer J., Leibowitz N., Yossifon G. Extended space charge near nonideally selective membranes and nanochannels // Phys. Rev. E. 2015. Vol. 92. P. 013002.
  10. Demekhin E.A., Nikitin N.V., Shelistov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion // Physics of Fluids. 2013. Vol. 25. P. 122001.
  11. Danielsson C.-O., Dahlkild A., Velin A., Behm M.A. Model for the enhanced water dissociation on monopolar membranes // Electrochimica Acta. 2009. Vol. 54. P. 2983-2991.
  12. Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes // Electrochimica Acta. 1984. Vol. 29. P. 151-158.
  13. Катализ реакции диссоциации воды фосфорнокислотными группами биполярной мембраны МБ-3 // Электрохимия. 1986. Т. 22. № 6. С. 791-795. [Sheldeshov N.V., Zabolotsky V.I., Pismenskaya N.D., Gnusin N.P. Kataliz reaktsii dissotsiatsii vody fosfornokislotnymi gruppami bipoliarnoi membrany MB-3 [Catalysis of the water dissociation reaction bipolar membrane phosphoric acid group MB-3]. Elektrokhimiya [Electrochemistry], 1986, vol. 22, no. 6, pp. 791-795. (In Russian)]
  14. Шельдешов Н.В., Заболоцкий В.И., Лебедев К.А., Алпатова Н.В., Ковалев Н.В. Строение области пространственного заряда на биполярной границе и диссоциация молекул воды в биполярной мембране модифицированной соединением хрома(III) // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2014. № 10. С. 990-1009. [Sheldeshov N.V., Zabolotsky V.I., Lebedev K.A., Alpatova N.V., Kovalev N.V. Stroenie oblasti prostranstvennogo zaryada na bipolyarnoy granitse i dissotsiatsiya molekul vody v bipolyarnoy membrane modifitsirovannoy soedineniem khroma(III) [Structure of the space charge region at bipolar junction and dissociation of water molecules in bipolar membrane modified by chromium (III) compound]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Polythematic online scientific journal of Kuban State Agrarian University], 2014, no. 10, pp. 990-1009. (In Russian)]
  15. Заболоцкий В.И., Никоненко В.В. Перенос ионов в мембранах. М.: Наука, 1996. 392 с. [Zabolotsky V.I., Nikonenko V.V. Perenos ionov v membranakh [Ion transport in membranes]. Moscow, Nauka Pub., 1996, pp. 392. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

39-46

Section

Article

Dates

Submitted

December 7, 2016

Accepted

December 11, 2016

Published

December 22, 2016

How to Cite

[1]
Demekhin, E.A., Morshneva, I.V., Kalaydin, E.N., Mathematical modeling of electrodynamics of bipolar membranes with water dissociation and chemical reaction of ionizable groups. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, № 4, pp. 39–46.

Similar Articles

1-10 of 300

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>