Allocation and movement of roots of the Lamb wave dispersion equation in complex plane

Authors

  • Evdokimov A.A. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

Abstract

The classical Lamb problem is considered for steady-state harmonic waves in a free elastic layer under the applied load. An integral representation of the solution is reduced to an infinite series in terms of residues at the poles of Green's matrix. These poles coincide with the roots of the Lamb's dispersion equation and define eigenwaveforms that are normal modes of the layer. The pole arrangement on the continual dispersion curves in complex plane of wave number and their frequency dependency are studied. Two transformation mechanisms of the complex wave numbers into the real ones are observed. The first mechanism is regular. In this case, complex roots become real through the imaginary axis. Second one is irregular, when complex pole becomes real without passing imaginary axis and forms a backward wave. These Lamb waves have zero group velocity at the cutoff frequencies. Their appearances are accompanied by resonance phenomena.

Keywords:

elastic layer, dispersion equation, Lamb wave

Funding information

Работа выполнена при поддержке Российского Научного Фонда (проект № 17-11-01191).

Author Biography

  • Aleksandr A. Evdokimov

    аспирант кафедры вычислительных технологий Кубанского государственного университета

References

  1. Lamb H. On Waves in an Elastic Plate // The Royal Society. 1917. Vol. 93. Iss. 648. P. 114-128.
  2. Балакирев М.К., Гилинский И.А. Волны в пьезокристаллах. Новосибирск: Наука, 1982. 239 c. [Balakirev M.K., Gilinsky I.A. Volny v pezokristallah [Waves in piezoelectric crystals]. Novosibirsk, Nauka publish, 1982, 239 p. (In Russian)]
  3. Giurgiutiu В. Structural health monitoring with Piezoelectric Wafer Active Sensors. 2nd ed. USA: Academic Press, 2014. 1024 pp.
  4. Викторов И.А. Звуковые поверхностные волны в твердых телах. М.: Наука, 1981. 284 c. [Viktorov I.A. Zvukovye poverhnostnye volny v tverdyh telah [Sound surface waves in solids]. Moscow, Nauka publish, 1981, 284 p. (In Russian)]
  5. Гринченко В.Т., Мелешко В.В. Гармонические колебания и волны в упругих телах. Киев: Наукова думка, 1981. 283 c. [Grinchenko V.T., Meleshko V.V. Garmonicheskie kolebaniya i volny v uprugih telah [Harmonic oscillations and waves in elastic bodies]. Kiev, Naukova Dumka publish, 1981, 283 p. (In Russian)]
  6. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 319 c. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskih oblastej [Dynamic mixed problems of the theory of elasticity for nonclassical domains]. Moscow, Nauka Publish, 1979, 319 p. (In Russian)]
  7. Глушков Е.В., Глушкова Н.В. К определению динамической контактной жесткости упругого слоя // ПММ СССР. 1990. Т. 54. № 3. С. 474-479. [Glushkov E.V., Glushkova N.V. K opredeleniyu dinamicheskoy kontaktnoy zhestkosti uprugogo sloya [Definition of the dynamic contact stiffness of an elastic layer]. PMM SSSR [PMM USSR], 1990, vol. 54, no. 3, pp. 474-479. (In Russian)]
  8. Глушков Е.В., Глушкова Н.В., Лапина О.Н. Дифракция нормальных мод в составных и ступенчатых упругих волноводах // Прикладная математика и механика. 1998. Т. 62. № 2. С. 297-303. [Glushkov E.V., Glushkova N.V., Lapina O.N. Difraktsiya normal'nykh mod v sostavnykh i stupenchatykh uprugikh volnovodakh [Diffraction of Normal Modes in Composite and Stepped Elastic Waveguides]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1998, vol. 62, no. 2, pp. 297-303. (In Russian)]
  9. Глушков Е.В., Глушкова Н.В., Зееманн В., Кваша О.В. Возбуждение упругих волн в слое пьезокерамическими накладками // Акустический журнал. 2006. Т. 52. № 4. С. 470-479. [Glushkov E.V., Glushkova N.V., Seemann W., Kvasha O.V. Vozbuzhdeniye uprugikh voln v sloye p'yezokeramicheskimi nakladkami [Elastic wave excitation in a layer by piezoceramic patch actuators]. Akusticheskiy zhurnal [Acoustic journal], 2006, vol. 52, no. 4, pp. 470-479. (In Russian)]
  10. Глушкова Н.В. Определение и учет сингулярных составляющих в задачах теории упругости. Дисс. докт. физ.-мат. наук. Краснодар:КубГУ, 2000, 220 с. [Glushkova N.V. Opredeleniye i uchet singulyarnykh sostavlyayushchikh v zadachakh teorii uprugosti. Dis. d-ra fiz.-mat. nauk [Definition and allowance for singular components in problems of the theory of elasticity. Dr. phys. and math. sci. diss.]. Krasnodar, 2000, 220 p. (In Russian)]
  11. Prada C., Clorennec D., Royer D. Wave energy transfer in elastic half-spaces with soft interlayers // J. Acoust. Soc. Am. 2008. Vol. 124 No 1. P. 203-212.

Downloads

Issue

Pages

30-37

Section

Mechanics

Dates

Submitted

July 5, 2017

Accepted

August 15, 2017

Published

September 30, 2017

How to Cite

[1]
Evdokimov, A.A., Allocation and movement of roots of the Lamb wave dispersion equation in complex plane. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, № 3, pp. 30–37.

Similar Articles

1-10 of 203

You may also start an advanced similarity search for this article.