Axisymmetric thermoelastic deformation of transversely isotropic rotation bodies

Authors

  • Ivanychev D.A. Lipetsk State Technical University, Lipetsk, Russian Federation

UDC

539.3

EDN

FNOYJB

DOI:

10.31429/vestnik-16-1-31-40

Abstract

The aim of the work is to determine the axisymmetric stress-strain state of anisotropic bodies of revolution under the influence of an external load, and unbalanced and under conditions of temperature influences with missing internal heat sources.

This problem is provided by the development of the method of boundary states on the class of axisymmetric problems of thermoelasticity for anisotropic bodies of revolution. Development of the theory of constructing the bases of spaces of internal states, including displacement, deformation, stresses and temperature. The basis is formed on the basis of the general solution of the thermoelasticity problem for a transversely isotropic body of revolution and the formation of the relations determining the desired elastic state.

To determine the elastic axisymmetric state from the action of mass forces, it is assumed that the inverse method is extended to a class of problems for anisotropic bodies. By rheology, the inverse method is similar to the method of boundary states. The basis of the space of states is formed with the help of fundamental polynomials. After the orthogonalization of the basis, the desired state is determined by the Fourier series, the coefficients of which are definite integrals whose nuclei constitute the multiplication of temperatures.

The solution of the boundary value problem of mechanics is assumed to be a means of the method of boundary states. The basis of the space of internal states is formed according to the fundamental system of Weierstrass polynomials. The mechanical characteristics are expanded in a series of elements of the orthonormal basis, where the scalar products having the energy sense act as coefficients.

The final result is written as the sum of three independent states. The solution of the test problem for a circular cylinder from a rock with the corresponding conclusions is given, the design problem for a body of revolution is a stepped cylinder. Explicit and indirect signs of the convergence of the solution of problems and graphical visualization of the results are presented.

Keywords:

anisotropy, thermoelasticity, boundary state method, inverse method, mass forces, axisymmetric problems, boundary value problems

Author info

  • Dmitry A. Ivanychev

    канд. физ.-мат. наук, доцент кафедры общей механики Липецкого государственного технического университета

References

  1. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с. [Novaczkij V. Teoriya uprugosti [Theory of elasticity]. Mir, Moscow, 1975. (In Russian)]
  2. Победря Б.Е. Механика композиционных материалов. М.: Изд-во МГУ, 1984. 336 с. [Pobedrya B.E. Mexanika kompozicionny'x materialov [Mechanics of composite materials]. Izdatelstvo MGU, Moscow, 1984. (In Russian)]
  3. Кравчук А.С., Кожевников В.П., Уржумцев Ю.С. Механика полимерных и композиционных материалов. М.: Наука, 1985. 304 с. [Kravchuk A.S., Kozhevnikov V.P., Urzhumcev Yu.S. Mexanika polimerny'x i kompozicionny'x materialov [Mechanics of polymeric and composite materials]. Nauka, Moscow, 1985. (In Russian)]
  4. Пеньков В.Б., Викторов Д.В., Саталкина Л.В. Развитие метода граничных состояний на класс задач термоупругости // Материалы международной научной конференции "Современные проблемы математики, механики, информатики" (Россия, Тула, 17-21 ноября 2008 г.). Тула: ТулГУ, 2008. С. 274–277. [Penkov V.B., Viktorov D.V., Satalkina L.V. Razvitie metoda granichny'x sostoyanij na klass zadach termouprugosti [Development of the boundary state method for a class of thermoelasticity problems]. Materialy' mezhdunarodnoj nauchnoj konferencii 'Sovremenny'e problemy' matematiki, mexaniki, informatiki'' [Proceedings of the international scientific conference 'Current problems of mathematics, mechanics, computer science''], Rossiya, Tula, TulGU, 2008. pp. 274–277. (In Russian)]
  5. Ханьжов Б.Д. Вариационное решение осесимметричной задачи термоупругости для трансверсально-изотропного цилиндра конечной длины. Изв. вузов. Серия матем., 1967, № 12. С. 84–89. [Xanzhov B.D. Variacionnoe reshenie osesimmetrichnoj zadachi termouprugosti dlya transversal'no-izotropnogo cilindra konechnoj dliny' [Variational solution of the axisymmetric problem of thermoelasticity for a transversely isotropic cylinder of finite length]. Izvestiya vuzov. Matematika [News of universities. Maths], 1967, No. 12, pp. 84–89. (In Russian)]
  6. Левина Л.В., Кузьменко Н.В. Обратный метод эффективного анализа состояния упругого тела от массовых сил из класса непрерывных // ХI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики: сборник докладов (Казань, 20–24 августа 2015 г.). / Cост. Д.Ю. Ахметов, А.Н. Герасимов, Ш.М. Хайдаров, под ред. Д.А. Губайдуллина, А.М. Елизарова, Е.К. Липачёва. Казань: Изд-во Казан. ун-та, 2015. С. 2276–2278. [Levina L.V., Kuzmenko N.V. Obratny'j metod e'ffektivnogo analiza sostoyaniya uprugogo tela ot massovy'x sil iz klassa neprery'vny'x [The inverse method of effective analysis of the state of an elastic body from mass forces from the class of continuous]. XI Vserossijskij s'ezd po fundamental'ny'm problemam teoreticheskoj i prikladnoj mexaniki: sbornik dokladov (Kazan', 20–24 avgusta 2015 g.) [XI All-Russian Congress on the fundamental problems of theoretical and applied mechanics: a collection of reports (Kazan, August 20–24, 2015)]. Cost. D.Yu. Axmetov, A.N. Gerasimov, Sh.M. Xajdarov, pod red. D.A. Gubajdullina, A.M. Elizarova, E.K. Lipachyova. Kazan': Izdatelstvo Kazan. un-ta, 2015, pp. 2276–2278. (In Russian)]
  7. Иванычев Д.А. Метод граничных состояний в приложении к осесимметричным задачам для анизотропных тел // Вести высших учебных заведений Черноземья. Научно-технический и производственный журнал. Липецк, ЛГТУ. №1. 2014. С. 19–26. [Ivany'chev D.A. Metod granichny'x sostoyanij v prilozhenii k osesimmetrichny'm zadacham dlya anizotropny'x tel [The boundary state method applied to axisymmetric problems for anisotropic bodies]. Vesti vy'sshix uchebny'x zavedenij Chernozem'ya. Nauchno-texnicheskij i proizvodstvenny'j zhurnal [Conduct higher education institutions Chernozem. Scientific, technical and industrial journal]. Lipeczk, LGTU. No. 1, 2014, pp. 19–26. (In Russian)]
  8. Пеньков В.Б., Пеньков В.В. Метод граничных состояний для решения задач линейной механики // Дальневосточный математический журнал. 2001. Т.2, №2. С. 115–137. [Penkov V.B., Penkov V.V. Metod granichny'x sostoyanij dlya resheniya zadach linejnoj mexaniki [The boundary state method for solving linear mechanics problems]. Dal'nevostochny'j matematicheskij zhurnal [Far Eastern Mathematical Journal], 2001, Vol. 2, No. 2, pp. 11–137. (In Russian)]
  9. Александров А.Я., Соловьев Ю.И. Пространственные задачи теории упругости (применение методов теории функций комплексного переменного). М.: Наука. Главная редакция физико-математической литературы, 1978, 464 с. [Aleksandrov A.Ya., Solov'ev Yu.I. Prostranstvenny'e zadachi teorii uprugosti (primenenie metodov teorii funkcij kompleksnogo peremennogo) [Spatial problems of the theory of elasticity (application of methods of the theory of functions of a complex variable)], Moscow, Nauka Publ, Glavnaya redakciya fiziko-matematicheskoj literatury', 1978, 464 p. (In Russian)]
  10. Саталкина Л.В. Наращивание базиса пространства состояний при жестких ограничениях к энергоемкости вычислений // Сб. тезисов докладов научной конференции студентов и аспирантов Липецкого государственного технического университета. Липецк: ЛГТУ, 2007. С. 130–131. [Satalkina L.V. Narashhivanie bazisa prostranstva sostoyanij pri zhestkix ogranicheniyax k e'nergoemkosti vy'chislenij [Building up the basis of the state space with hard constraints on the energy intensity of computations] Sbornik tezisov dokladov nauchnoj konferencii studentov i aspirantov Lipeczkogo gosudarstvennogo texnicheskogo universiteta [Collection of theses of reports of the scientific conference of students and graduate students of Lipetsk State Technical University], Lipeczk, LGTU, 2007, pp. 130–131. (In Russian)]
  11. Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука, 1977, 416 с. [Lexniczkij S.G. Teoriya uprugosti anizotropnogo tela [Theory of elasticity of anisotropic body]. Izd. 2, Moscow: Nauka Publ., 1977, 416 p. (In Russian)]
  12. Юдин В.А., Королёв А.В., Афанаскин И.В., Вольпин С.Г. Теплоёмкость и теплопроводность пород и флюидов баженовской свиты – исходные данные для численного моделирования тепловых способов разработки // М.: ФГУ ФНЦ НИИСИ РАН, 2015. 22 с. [Yudin V.A., Korolyov A.V., Afanaskin I.V., Vol'pin S.G. Teployomkost' i teploprovodnost' porod i flyuidov bazhenovskoj svity' – isxodny'e danny'e dlya chislennogo modelirovaniya teplovy'x sposobov razrabotki [Heat capacity and thermal conductivity of rocks and fluids of the Bazhenov formation are the initial data for the numerical simulation of thermal methods of development] Moscow, FGU FNCz NIISI RAN, 2015. 22 p. (In Russian)]
  13. Добрынин В.М., Вендельштейн Б.Ю., Кожевников Д.А. Петрофизика (Физика горных пород): Учеб. для вузов. 2-ое изд. перераб. и доп. под редакцией доктора физико-математических наук Д.А. Кожевникова // М.: ФГУП Издательство ``Нефть и газ'' РГУ нефти и газа им. И.М. Губкина, 2004, 368 с. [Dobry'nin V.M., Vendel'shtejn B.Yu., Kozhevnikov D.A. Petrofizika (Fizika gorny'x porod): Ucheb. dlya vuzov. 2-oe izd. pererab. i dop. pod redakciej doktora fiziko-matematicheskix nauk D.A. Kozhevnikova [Petrophysics (Physics of rocks): Proc. for universities. 2nd ed. reclaiming and add. Edited by Doctor of Physical and Mathematical Sciences D.A. Kozhevnikova] Moscow, FGUP Izdatel'stvo "Neft' i gaz" RGU nefti i gaza im. I.M. Gubkina, 2004, 368 p. (In Russian)]
  14. Невиль А.М. Свойства бетона. М.: Издательство литературы по строительству, 1972. 343 с. [Nevil' A.M. Svojstva betona [Concrete properties]. Izdatel'stvo literatury' po stroitel'stvu. Moskva, 1972, 343 p. (In Russian)]
  15. Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика / Под ред. Н.Б. Дортман. М.: Недра, 1984. 455 с. [Fizicheskie svojstva gorny'x porod i polezny'x iskopaemy'x (petrofizika). Spravochnik geofizika [Physical properties of rocks and minerals (petrophysics). Handbook of Geophysics] Pod red. N.B. Dortman, – 2-e izd., pererab. i dop, Moskva, Nedra, 1984, 455 p. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

31-40

Section

Mechanics

Dates

Submitted

March 2, 2019

Accepted

March 14, 2019

Published

March 30, 2019

How to Cite

[1]
Ivanychev, D.A., Axisymmetric thermoelastic deformation of transversely isotropic rotation bodies. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, т. 16, № 1, pp. 31–40. DOI: 10.31429/vestnik-16-1-31-40

Similar Articles

1-10 of 530

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)