Computational Method for Searching Singular Points on the Plane of Complex Time for Research of Determinated-Chaotic Systems (Using the Example of E. Lorenz System)
UDC
531EDN
WRPNHTDOI:
10.31429/vestnik-17-1-2-69-80Abstract
The general scheme of search and recognition (identification) of singular points of the solution of dynamic systems is present. Under singular points we understand not a features of the phase flow, but the poles of the functions of the solution components for analytical continuation into the plane of complex time. Pole orders may be different for different components. As examples for calculation, precisely known system exhibiting deterministic chaotic behavior – E. Lorentz system, and also indicates a general scheme for matching of the differential dynamic system solution with the special integer sequence (quantization).
The introduction describes a method for searching for singular points on the plane of complex time, which is a specific variant of numerical integration with the optimal choice of the direction of the next step. Optimization is the minimization of the number of steps, that is, ultimately – the computational time. The second part of the paper describes an algorithm for searching for singular points of the layer closest to the real time axis, and this algorithm is numerically implemented for the Lorentz system. The third (final) part of the paper describes a possible application of the method for constructing quantum-mechanical models of multielectronic systems.
Keywords:
dynamical systems, deterministic chaos, analytic continuationReferences
- Lorenz E.N. Deterministic non–periodic flow // J. Atmos. Sci. 1963. Vol. 20. P. 130–141.
- Бунякин А.В. Особые точки решения семимерной системы турбулентности // Журн. выч. мат. и матем. физ. 1993. № 6. С. 968–973. [Bunyakin, A.V. Osobye tochki resheniya semimernoy sistemy turbulentnosti [Singular points of the solution of the seven-dimensional turbulence system]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics], 1993, no. 6, pp. 968–973. (In Russian)]
- Бунякин А.В. Особые точки динамических систем // Журн. выч. мат. и матем. физ. 1995. № 3. С. 477–478. [Bunyakin, A.V. Osobye tochki dinamicheskikh sistem [Singular points of dynamical systems]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [J. of Computational Mathematics and Mathematical Physics], 1995, no. 3, pp. 477–478. (In Russian)]
- Кондратеня С.Г., Яблонский А.И. Подвижные особые точки систем дифференциальных уравнений // Диф. уравн. 1968. Т. 4. № 6. С. 983–990. [Kondratenya, S.G., Yablonskiy, A.I. Podvizhnye osobye tochki sistem differentsial'nykh uravneniy [Moving singular points of systems of differential equations]. Differentsial'nye uravneniya [Differential equations], 1968, vol. 4, no. 6, pp. 983–990. (In Russian)]
- Пушкевич Г.Е., Яблонский А.И. О подвижных особых точках системы дифференциальных уравнений, описывающих модели генетики // Диф. уравн. 1991. Т. 27. № 8. С. 1453–1456. [Pushkevich, G.E., Yablonskiy, A.I. O podvizhnykh osobykh tochkakh sistemy differentsial'nykh uravneniy, opisyvayushchikh modeli genetiki [On movable singular points of a system of differential equations describing genetic models]. Differentsial'nye uravneniya [Differential equations], 1991, vol. 27, no. 8, pp. 1453–1456. (In Russian)]
- Климаншевская И.Н., Кондратеня С.Г. Простейшие классы автономных систем, не имеющих решений с подвижными неалгебраическими особыми точками // Диф. уравн. 1991. Т. 27. № 3. С. 335–353. [Klimanshevskaya, I.N., Kondratenya, S.G. Prosteyshie klassy avtonomnykh sistem, ne imeyushchikh resheniy s podvizhnymi nealgebraicheskimi osobymi tochkami [The simplest classes of autonomous systems that do not have solutions with moving non-algebraic singular points]. Differentsial'nye uravneniya [Differential equations], 1991, vol. 27, no. 3, pp. 335–353. (In Russian)]
- Qin Yuanxun, Zhao Huaizong Theory of singular points of ordinary differential equations in complex domain // Acta math. Appl. Sin. Eng. Ser. 1992. Vol. 8. Iss. 4. P. 316–321.
- Grebogi C., Ott E., Yorke J.A. Are three–frequency quasi–periodic orbits to be expected in typical nonlinear systems // Phys. Rev. Lett. 1983(a). Vol. 51. P. 339–345. DOI: 10.1103/PhysRevLett.51.339
- Grebogi C., Ott E., Yorke J.A. Crises, sudden changes in chaotic attractors and transients to chaos // Physica 7D. 1983(b). Vol. 7. P. 181–200.
- Poincare H. Les methodes nouvelles de la mechanique celeste. Gauthier–Villars, 1892. Paris (In English: N.A.S.A. Translation: TT F-450/452. U.S. Fed. Clearinghouse, Springfield, VA, USA).
- Flower A.C., McGuines M.J. A description of the Lorenz attractor at high Prandtl–number // Physika. 1982. Vol. D5. Iss. 2-3. P. 149–182.
- Зиновьев А.Т., Штерн В.Н. Структуры стохастических траекторий системы Лоренца // Числ. мет. мех. сплош. среды. 1983. Т. 14. № 1. С. 51–60. [Zinov'ev, A.T., Shtern, V.N. Struktury stokhasticheskikh traektoriy sistemy Lorentsa [Structures of stochastic trajectories of the Lorentz system]. Chislennye metody mekhaniki sploshnoy sredy [Numerical methods of continuum mechanics], 1983, vol. 14, no. 1, pp. 51–60. (In Russian)]
- Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations // J. Stat. Phys. 1978. Vol. 19. P. 25–52.
- Feigenbaum M.J. Universal behavior in nonlinear systems // Physica D: Nonlinear Phenomena. 1983. Vol. 7. Iss. 1-–3. P. 16–39. (Имеется перевод: Фейгенбаум М. Универсальность в поведении нелинейных систем // УФН. 1983. Т. 141. № 2. С. 343–374).
- Guckenheimer J., Worfolk P. Intant chaos // Nonlinearity. 1992. Vol. 5. Iss. 3. P. 1211–1222.
- Бунякин А.В. Особые точки решения системы дифференциальных уравнений Лоренца // Журн. выч. мат. и матем. физ. 1991. № 10. С. 1489–1497. [Bunyakin, A.V. Osobye tochki resheniya sistemy differentsial'nykh uravneniy Lorentsa [Singular points of the solution of the system of Lorentz differential equations]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [J. of Computational Mathematics and Mathematical Physics], 1991, no. 10, pp. 1489–1497. (In Russian)]
- Eckmann J.P. Road to turbulence in dissipative dynamical systems // Rev. Mod. Phys. 1981. Vol. 53. P. 643–654. DOI: 10.1103/RevModPhys.53.643
- Campbell D., Rose H. (eds.) Order in chaos // Proc. of the Int. Conf. in Los Alamos. Amsterdam, North Holland, 1983, 371 p.
- Golubb J.P., Benson S.V. Phase locking in the oscillations leading to turbulence, in H. Heken (ed.): Pattern formation and pattern recognition. Springer–Heidenberg, New York, 1979.
- Jansen M.N., Bak P., Bohr T. Complete Devil’s staircase, fractal dimension and universality of mode–locking structures // Phys. Rev. Lett. 1983(b). Vol. 50. P. 1637–1639.
- Libchaber A., Fauve S., Laroche C. Two–parameter study of routes to chaos // Physica D: Nonlinear Phenomena. 1983. Vol. 7. P. 73–84.
- Schuster H.G. Deterministic chaos. An introduction. XXIII. Weinheim, Physik-Verlag, 1984. 220 p.
- Hirsch M.W., Smale S., Devaney R.L. Differential equations, dynamical systems and an introduction to chaos. Elsevier, 2018. 432 p.
- Elhadj Z. Dynamical systems: Theory and Applications. CRC Press, 2019. 400 p.
- Argyris J.H., Faust G., Haase M., Friedrich R. An exploration of dynamical system and chaos. Springer, 2015. 345 p.
- Колмогоров А.Н. О сохранении условно периодических движений при малом изменении функции Гамильтона // ДАН СССР. 1954. Т. 98. № 4. С. 527–530. [Kolmogorov, A.N. O sokhranenii uslovno periodicheskikh dvizheniy pri malom izmenenii funktsii Gamil'tona [On the conservation of conditionally periodic motions with a small change in the Hamilton function]. Doklady Akademii nauk SSSR [Reports of the USSR Academy of Sciences], 1954, vol. 98, no. 4, pp. 527–530. (In Russian)]
- Арнольд В.И. Малые знаменатели II. Доказательство теоремы А.Н. Колмогорова о сохранении условно периодических движений при малом изменении функции Гамильтона // Усп. мат. наук. 1963. Т. 18. С. 5–13. [Arnol'd, V.I. Malye znamenateli II. Dokazatel'stvo teoremy A.N. Kolmogorova o sokhranenii uslovno periodicheskikh dvizheniy pri malom izmenenii funktsii Gamil'tona [Small denominators II. Proof of the theorem of A.N. Kolmogorov on the conservation of conditionally periodic motions with a small change in the Hamilton function]. Uspekhi matematicheskikh nauk [Russian Mathematical Surveys], 1963, vol. 18, pp. 5–13. (In Russian)]
- Arnold V.I., Avez A. Ergodic problems in classical mechanics. Benjamin–New York, 1968. 286 p.
- Mozer J. Convergent series expansions of quasi-periodic motions // Math. Ann. 1967. Vol. 169. Iss. 1. P. 163–173.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2020 Бунякин А.В., Пшикова И.С.

This work is licensed under a Creative Commons Attribution 4.0 International License.