Electrophoresis of a dielectric particle in strong electric field

Authors

  • Frants E.A. Financial University, Krasnodar, Russian Federation
  • Shelistov V.S. Financial University, Krasnodar, Russian Federation
  • Ganchenko G.S. Financial University, Krasnodar, Russian Federation
  • Gorbacheva E.V. Kuban State University, Krasnodar, Russian Federation
  • Alekseev M.S. Kuban State University, Krasnodar, Russian Federation
  • Demekhin E.A. Financial University, Krasnodar, Russian Federation

UDC

532.5.013:532.516:538.5:544.6

EDN

QQNAWW

DOI:

10.31429/vestnik-18-4-33-40

Abstract

This paper is devoted to the problem of motion of a dielectric microparticle in a strong electric field. For the case of a low electric field strength, a comparison of the electrophoresis rate obtained from the force balance condition with the classical Helmholtz-Smoluchowski formula showed good agreement.  Direct numerical simulation of the problem in the full uncomplicated formulation for high electric field strength showed that at the interface between the solid particle and the electrolyte a region of spatial charge is formed, which was previously discovered for ion-selective microparticles. In an electric field of sufficiently high intensity, a part of the spatial charge detaches from the surface of the particle, which is swept away by the flow of the advancing liquid. This charge does not disintegrate and is preserved at a distance of several radii from the surface of the microparticle. Thus, there is a violation of the condition of local electroneutrality of the electrolyte solution at a sufficiently large distance from the surface of the microparticle.

Keywords:

electrophoresis, dielectric particle, Nernst-Planck-Poisson-Stokes system, strong electric field, non-equilibrium processes

Funding information

The reported study was funded by RFBR and administration of Krasnodar Territory, project number 19-48-235001.

Authors info

  • Elizaveta A. Frants

    младший научный сотрудник лаборатории "Электро- и гидродинамика микро- и наномасштабов" Финансового университета при Правительстве РФ

  • Vladimir S. Shelistov

    канд. физ.-мат. наук, ведущий научный сотрудник лаборатории "Электро- и гидродинамика микро- и наномасштабов" Финансового университета при Правительстве РФ

  • Georgiy S. Ganchenko

    канд. физ.-мат. наук, старший научный сотрудник лаборатории "Электро- и гидродинамика микро- и наномасштабов" Финансового университета при Правительстве РФ

  • Ekaterina V. Gorbacheva

    преподаватель кафедры "прикладная математика" Кубанского государственного университета

  • Maxim S. Alekseev

    студент факультета компьютерных технологий и прикладной математики Кубанского государственного университа

  • Eugeniy A. Demekhin

    д-р физ.-мат. наук, заведующий лабораторией "Электро- и гидродинамика микро- и наномасштабов" Финансового университета при Правительстве РФ

References

  1. Napoli M., Eijkel J.C.T., Pennathur S. Nanofluidic technology for biomolecule applications // Lab Chip. 2010. Vol. 10. P. 957.
  2. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices // Annu. Rev. Fluid Mech. 2012. Vol. 44. P. 401.
  3. Заболоцкий В.И., Никоненко В.В. Перенос ионов в мембранах. М.: Наука. 1996. 392 c. [Zabolockij V.I., Nikonenko V.V. Ion transport in membranes. Nauka, Moscow, 1996. (In Russian)]
  4. Бабешко В.А., Заболоцкий В.И., Кириллова Е.В., Уртенов М.Х. Декомпозиция систем уравнений Нернста-Планка-Пуассона // ДАН. 1995. Т. 344. № 4. С. 485–486. [Babeshko V.A., Zabolockij V.I., Kirillova E.V., Urtenov M.H. Decomposition of systems of Nernst-Planck-Poisson equations. Doklady RAN [Rep. of Russian Academy of Sciences], 1995, vol. 344, no. 4, pp. 485–486. (In Russian)]
  5. Бабешко В.А., Заболоцкий В.И., Сеидов P.P., Уртенов М.Х. Декомпозиционные уравнения для стационарного переноса электролита в одномерном случае // Электрохимия. 1997. Т. 33. № 8. С. 855–862. [Babeshko V.A., Zabolockij V.I., Seidov P.P., Urtenov M.H. Decomposition equations for stationary electrolyte transfer in the one-dimensional case. Jelektrohimija [Electrochemistry], 1997, vol. 33, no. 8, pp. 855–862. (In Russian)]
  6. Уртенов М.Х., Коваленко А.В. Полная декомпозиция неодномерной системы уравнений Нернста-Планка-Пуассона для бинарного электролита // Экологический вестник научных центров Черноморского экономического сотрудничества. 2009. № 2. С. 32–37. [Urtenov M.H., Kovalenko A.V. Complete decomposition of a one-dimensional system of Nernst-Planck-Poisson equations for a binary electrolyte. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of the Scientific Centers of the Black Sea Economic Cooperation], 2009, no. 2, pp. 32–37. (In Russian)]
  7. Smoluchowski M. Contribution to the theory of electro-osmosis and related phenomena // Bull. Int. Acad. Sci. Cracovie. 1903. No. 184. P. 199.
  8. Mishchuk N.A. Concentration polarization of interface and non-linear electrokinetic phenomena // Advances in Colloid and Interface Science. 2010. Vol. 160. P. 16–39.
  9. Interfacial Electrokinetics and Electrophoresis / Ed. by Angel V. Delgado. CRC Press, 2002. 1016 p.
  10. Schnitzer O., Yariv E. Macroscale description of electrokinetic flows at large zeta potentials: Non-linear surface conduction. // Physical Review E. 2012. Vol. 86. Iss. 2. P. 021503.
  11. Schnitzer O., Zeyde R., Yavneh I., Yariv E. Weakly non-linear electrophoresis of a highly charged colloidal particle // Physics of Fluids. 2013. Vol. 25. Iss. 5. P. 052004.
  12. Schnitzer O., Yariv E. Non-linear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis // Physics of Fluids. 2014. Vol. 26. Iss. 12. P. 122002.
  13. Tottori S., Misiunas K., Keyser U.F. Non-linear Electrophoresis of Highly Charged Nonpolarizable Particles // Physical Review Letters. 2019. Vol. 123. Iss. 1. P. 014502.
  14. Demekhin E., Korovyakovskiy A., Shelistov V. Nonlinear electrophoresis in a strong electric field // International Journal of Heat and Technology. 2010. Vol. 28, no. 1.
  15. Ganchenko G., Frants E., Shelistov V., Nikitin N., Amiroudine S., Demekhin E. Extreme nonequilibrium electrophoresis of an ion-selective microgranule // Physical Review Fluids. 2019. Vol. 4. Iss. 4. P. 043703.

Downloads

Download data is not yet available.

Issue

Pages

33-40

Section

Physics

Dates

Submitted

October 10, 2021

Accepted

November 23, 2021

Published

January 10, 2022

How to Cite

[1]
Frants, E.A., Shelistov, V.S., Ganchenko, G.S., Gorbacheva, E.V., Alekseev, M.S., Demekhin, E.A., Electrophoresis of a dielectric particle in strong electric field. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, т. 18, № 4, pp. 33–40. DOI: 10.31429/vestnik-18-4-33-40

Similar Articles

1-10 of 196

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)