On the development of approximate methods for researching processes in a block structured medium

Authors

  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Zaretskaya M.V. Kuban State University, Krasnodar, Russian Federation
  • Lozovoy V.V. Southern Scientific Centre of Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Zaretskiy A.G. Kuban State University, Krasnodar, Russian Federation

UDC

539.422.3

DOI:

https://doi.org/10.31429/vestnik-15-2-19-23

Abstract

We need to consider the model of the medium as close as possible to the natural one, to apply a mathematical apparatus that adequately and reliably describes the processes and phenomena occurring in the studied medium of a complex structure in the process of creating modern systems for monitoring the geophysical medium, regulating the quality of the environment.

Such a possibility is provided by methods having a topological basis, in particular, a differential factorization method. However, with strict adherence to the algorithm, the numerical evaluation of the parameters under study requires considerable time. Therefore, it is necessary to identify those moments where it is possible to proceed to an approximate solution without compromising the accuracy of the result obtained.

A method is proposed for constructing approximate solutions of systems of integral equations arising in the investigation of boundary problems of the mechanics of a solid deformed body and the mechanics of continuous media by a differential factorization method for media of complex structure. The justification of the proposed conclusions for the problems posed both in Cartesian and curvilinear coordinate systems is fulfilled.

As an example, the application of approximate methods in problems of assessing the quality of the aquatic environment or the atmosphere is considered.

The results can be used for express forecast of the ecological state of the environment, in systems
of integrated geoecological monitoring.

Keywords:

medium, complex internal structure, factorization approach, pseudodifferential equation, approximate method

Funding information

Работа выполнена при поддержке РФФИ (грант №16-08-00191_а), РФФИ и администрации Краснодарского края (гранты №16-41-230154).

Author info

  • Olga M. Babeshko

    д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Marina V. Zaretskaya

    д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

  • Viktor V. Lozovoy

    канд физ.-мат. наук, научный сотрудник Южного научного центра РАН

  • Aleksandr G. Zaretskiy

    студент Кубанского государственного университета

References

  1. Babeshko V.A., Evdokimova O.V., Babeshko O.M., Zaretskaya M.V., Pavlova A.V. The differential factorization method for a block structure // Doklady Physics. 2009. Vol. 54. No. 1. С. 25-28. [Babeshko V.A., Evdokimova O.V., Babeshko O.M., Zaretskaya M.V., Pavlova A.V. The differential factorization method for a block structure. Doklady Physics, 2009, vol. 54, iss. 1, pp. 25-28.]
  2. Бабешко В.А., Евдокимова О.В., Бабешко О.М., Зарецкая М.В., Павлова А.В., Мухин А.С., Лозовой В.В., Федоренко А.Г. О приложениях теории блочных структур в науках о земле, сейсмологии, строительстве, материаловедении // Экологический вестник научных центров Черноморского экономического сотрудничества. 2008. №4. С. 27-34. [Babeshko V.A., Evdokimova O.V., Babeshko O.M., Zareckaja M.V., Pavlova A.V., Muhin A.S., Lozovoj V.V., Fedorenko A.G. On applications of the theory of block structures in the sciences of the earth, seismology, construction, materials science. Ecological bulletin of scientific centers of the Black Sea Economic Cooperation, 2008, no. 4, pp. 27-34. (In Russian)]
  3. Бабешко В.А., Евдокимова О.В., Бабешко О.М., Горшкова Е.М., Зарецкая М.В., Мухин А.С., Павлова А.В. О конвергентных свойствах блочных элементов // ДАН. 2015. Т. 465. №3. С. 298. [Babeshko V.A., Evdokimova O.V., Babeshko O.M., Gorshkova E.M., Zareckaya M.V., Muhin A.S., Pavlova A.V. Convergence properties of block elements. DokladyDoklady akademii nauk [Rep. of Russian Academy of Science], 2015, vol. 465, no. 3, pp. 298-301. (In Russian)]
  4. Вабешко В.А., Зарецкая М.В., Рядчиков И.В. К вопросу моделирования процессов переноса в экологии, сейсмологии и их приложения // Экологический вестник научных центров Черноморского экономического сотрудничества. 2008. №3. С. 20-25. [Babeshko V.A., Zareckaya M.V., Ryadchikov I.V. To the problem of modeling transport processes in ecology, seismology and their applications. DokladyEcological bulletin of scientific centers of the Black Sea Economic Cooperation, 2008, no. 3, pp. 20-25. (In Russian)]
  5. Зарецкая М.В. Математические модели деструктивных процессов в структурно-неоднородной геофизической среде // Защита окружающей среды в нефтегазовом комплексе. 2014. №2. С. 25-30. [Zareckaja M.V. Mathematical models of destructive processes in a structurally heterogeneous geophysical medium. DokladyZashhita okruzhajushhej sredy v neftegazovom komplekse [Environmental protection in the oil and gas sector], 2014, no. 2, pp. 25-30. (In Russian)]
  6. Бабешко В.А., Бабешко О.М., Зарецкая М.В., Капустин М.С., Шестопалов В.Л. Дифференциальный метод факторизации в задачах геоэкологии // Вычислительная механика сплошных сред. 2013. Т. 6. №1. С. 5-11. [Babeshko V.A., Babeshko O.M., Zareckaja M.V., Kapustin M.S., Shestopalov V.L. Differential factorization method in problems of geoecology. DokladyComputational continuum mechanics, 2013, vol. 6, no. 1, pp. 5-11. (In Russian)]
  7. Зарецкая М.В. Развитие методов исследования процессов переноса в структурно-неоднородных средах // Защита окружающей среды в нефтегазовом комплексе. 2014. №5. С. 54-58. [Zareckaja M.V. Development of methods for studying transport processes in structurally inhomogeneous media. DokladyZashhita okruzhajushhej sredy v neftegazovom komplekse [Environmental protection in the oil and gas sector], 2014, no. 5, pp. 54-58. (In Russian)]
  8. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об особенностях метода блочного элемента в нестационарных задачах // ДАН. 2011. Т. 438. №4. С. 470-474. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the singularities of the block element method in nonstationary problems. DokladyDoklady akademii nauk [Rep. of Russian Academy of Science], 2011, vol. 438, no. 4, pp. 470-474. (In Russian)]
  9. Зарецкая М.В., Бабешко О.М., Зарецкий А.Г., Лозовой В.В. О разнотипных блочных элементах в задачах геоэкологии // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. №2. С. 36-41. [Zareckaja M.V., Babeshko O.M., Zareckij A.G., Lozovoj V.V. On heterogeneous block elements in the problems of geoecology. DokladyEcological bulletin of scientific centers of the Black Sea Economic Cooperation, 2017, no. 2, pp. 36-41. (In Russian)]
  10. Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. 256 с. [Babeshko V.A. DokladyGeneralized factorization method in spatial dynamic mixed problems of the theory of elasticity. Nauka, Moscow, 1984. (In Russian)]

Downloads

Issue

Pages

19-23

Section

Mechanics

Dates

Submitted

March 20, 2018

Accepted

March 24, 2018

Published

June 27, 2018

How to Cite

[1]
Babeshko, O.M., Zaretskaya, M.V., Lozovoy, V.V., Zaretskiy, A.G., On the development of approximate methods for researching processes in a block structured medium. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 2, pp. 19–23. DOI: 10.31429/vestnik-15-2-19-23

Similar Articles

1-10 of 451

You may also start an advanced similarity search for this article.