Метод исследования наночастиц для материалов сложных реологий
УДК
539.3DOI:
https://doi.org/10.31429/vestnik-20-3-50-56Аннотация
В более ранних работах авторов исследована проблема моделирования самоорганизации и самосборки наночастиц в фрагменты наноматериалов. Предполагалось, что наночастицы представляются материалом, описываемым уравнением Гельмгольца, для которого решалась соответствующая граничная задача. В том случае, если наночастица имеет носитель в форме полосы, проблема представления решения векторной граничной задачи, с помощью совокупности решений скалярных задач в полосе решается достаточно просто. Однако, в случае областей с кусочно-гладкой границей, это становится мало очевидным. В связи с этим, в работе показано, что такое разложение выполнимо для областей типа прямоугольного клина. С помощью решений в этой области можно строить асимптотические и приближенные решения для такой неклассической области как прямоугольник. В работе применен подход, опирающийся на новый универсальный метод моделирования.
Ключевые слова:
наночастицы, граничные задачи, метод блочного элемента, упакованные блочные элементы, уравнения Ламе, уравнения ГельмгольцаИнформация о финансировании
Работа выполнена при финансовой поддержке Российского научного фонда (проект 22-21-00128).
Библиографические ссылки
- Новацкий, В., Теория упругости. Москва, Мир, 1975. [Nowatsky, V., Teoriya uprugosti = Elasticity Theory. Moscow, Mir, 1975. (in Russian)]
- Galerkin, B.G., Contribution à la solution générale du problème de la théorie de l'élasticité dans le cas de trois dimensions. C. R. Acad. Sci., 1930, vol. 190, pp. 1047–1048. (in French)
- Galerkin, B.G., Contribution à la solution générale du problème de la théorie de l'élasticité dans le cas de trois dimensions. C. R. Acad. Sci., 1931, vol. 193, pp. 568–571. (in French)
- Игумнов, Л.А., Грезина, А.В., Метрикин, В.С., Панасенко, А.Г., Численно-аналитическое моделирование диффузионных процессов в ограниченных многокомпонентных твердых телах. Проблемы прочности и пластичности, 2018, т. 80, № 3, с. 336–348. [Igumnov, L.A., Grezina, A.V., Metrikin, V.S., Panasenko, A.G., Numerical-analytical modeling of diffusion processes in bounded multicomponent solids. Problemy prochnosti i plastichnosti = Problems of Strength and Plasticity, 2018, vol. 80, no. 3, pp. 336–348. (in Russian)]
- Ворович, И.И., Александров, В.М., Бабешко, В.А., Неклассические смешанные задачи теории упругости. Москва, Наука, 1974. [Vorovich, I.I., Alexandrov, V.M., Babeshko, V.A., Neklassicheskie smeshannye zadachi teorii uprugosti = Nonclassical mixed problems of elasticity theory. Moscow, Nauka, 1974. (in Russian)]
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Исследование трехмерного уравнения Гельмгольца в клине методом блочного элемента. ПМТФ, 2021, т. 62, № 5, с. 15–21. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Investigation of the three-dimensional Helmholtz equation in a wedge by the block element method. Prikladnaya mekhanika i tekhnicheskaya fizika = Applied Mechanics and Engineering Physics, 2021, vol. 62, no. 5, pp. 15–21. (in Russian)] DOI: 10.15372/PMTF20210500
- Gordeev, S.K., Kukushkin, S.A., Osipov, A.V., Pavlov, Yu.V., Self-organization in the formation of a nanoporous carbon material. Physics of the Solid State, 2000, vol. 42, iss. 12, pp. 2314–2317.
- Arghavan, S., Singh A.V., On the vibrations of single-walled carbon nanotubes. J. of Sound and Vibration, 2011, vol. 330, iss. 13, pp. 3102–3122.
- Kang, J.W., Kwon, O.K., A molecular dynamics simulation study on resonance frequencies comparison of tunable carbon-nanotube resonators. Applied Surface Science, 2012, vol. 258, iss. 6, pp. 2014–2016. DOI: 10.1016/j.apsusc.2011.05.026
- Yoon J.W., Hwang H.J., Molecular dynamics modeling and simulations of a single-walled carbon-nanotube-resonator encapsulating a finite nanoparticle. Computational Materials Science, 2011, vol. 50, iss. 9, pp. 2741–2744. DOI: 10.1016/j.commatsci.2011.04.033
- Jun, Yin, Zhuhua, Zhang, Xuemei, Li, Jin, Yu, Jianxin, Zhou, Yaqing, Chen, Wanlin, Guo, Waving potential in grapheme. Nature Communications, 2014, vol. 5, p. 3582. DOI: 10.1038/ncomms4582
- Jun, Yin, Xuemei, Li, Jin, Yu, Zhuhua, Zhang, Jianxin, Zhou, Wanlin Guo, Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotechnology, 2014, vol. 9, iss. 5, pp. 378–383. DOI: 10.1038/nnano.2014.56
- Lei, X.W., Natsuki, T., Shi, J.X., Ni, Q.Q., An atomic-resolution nanomechanical mass sensor based on circular monolayer graphene sheet: Theoretical analysis of vibrational properties. J. Appl. Phys., 2013, vol. 113, p. 154313. DOI: 10.1063/1.4802438
- Lengiewicz, J., Korelc, J., Stupkiewicz, S., Automation of finite element formulations for large deformation contact problems. Int. J. Numer. Meth. Engng, 2011, vol. 85, iss. 10, pp. 1252–1279. DOI: 10.1002/nme.3009
- Roland, T., Retraint, D., Lu, K., Lu, J., Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater., 2006, vol. 54, pp. 1949–1954. DOI: 10.1016/j.scriptamat.2006.01.049
- Tian, J., Villegas, J., Yuan, W., Fielden, D., Shaw, L., Liaw, P., Klarstrom, D., A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater. Sci. Eng: A, 2007, vol. 468–470, pp. 164–170. DOI: 10.1016/j.msea.2006.10.150
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Фрактальные свойства блочных элементов и новый универсальный метод моделирования. ДАН, 2021, т. 499, с. 21–26. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk = Reports of the Academy of Sciences, 2021, vol. 499, pp. 21–26. (in Russian)] DOI: 10.31857/S2686740021040039
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента в разложении решений сложных граничных задач механики. ДАН, 2020, т. 495, с. 34–38. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. The block element method in the expansion of solutions to complex boundary value problems in mechanics. Doklady Akademii nauk = Reports of the Academy of Sciences, 2020, vol. 495, pp. 34–38. (in Russian)] DOI: 10.31857/S2686740020060048
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Об одном методе решения граничных задач динамической теории упругости в четвертьплоскости. ПММ, 2021, т. 85, № 3, с. 275–282. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., On a method for solving boundary value problems in the dynamic theory of elasticity in a quarter-plane. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 2021, vol. 85, no. 3, pp. 275–282.] DOI: 10.31857/S0032823521030024
Скачивания
Загрузки
Даты
Поступила в редакцию
Принята к публикации
Публикация
Как цитировать
Лицензия
Copyright (c) 2023 Зарецкая М.В., Бабешко В.А., Телятников И.С., Снетков Д.А.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.