О роли дефектов покрытия в виде трещин на предмет разрушения предоползневой структуры
УДК
539.3DOI:
https://doi.org/10.31429/vestnik-18-1-23-31Аннотация
В работе дается построение методом блочного элемента модели предоползневого состояния блочной структуры, состоящей из водонасыщенной среды и упругого покрытия, с учетом образования трещины в покрытии.
Пространственная предоползневая структура занимает неограниченную цилиндрическую область, в сечении которой находится третий квадрант. Она заполнена средой, описываемой анизотропным уравнением Гельмгольца, предельно текучей среди других водонасыщенных сред. С учетом физико-механических свойств предоползневой структуры она представляет вертикальную деформируемую сдерживающую стенку с деформируемым горизонтальным покрытием, называемые саркофагом оползневой среды. Для построения адекватной сформулированной модели рассматривается граничная задача для трехмерного уравнения Гельмгольца в указанной области с учетом наличия деформируемых стенки и покрытия. Методом блочного элемента строится точное решение граничной задачи для принятых покрытий на границе из мембраны. Исследуются свойства трещины, образовавшейся в мембране саркофага, и последствия ее развития для разрушения предоползневой структуры в построенной модели. Все результаты, построенные для уравнений Гельмгольца, благодаря подходу, изложенному в публикациях авторов по представлению решений граничных задач для системы уравнений Ламе с помощью блочных элементов для уравнения Гельмгольца, переносятся на материалы различных реологических свойств.
Ключевые слова:
оползневые явления, метод блочного элемента, граничная задача, мембранная поверхность трещины, анизотропное уравнение Гельмгольца, псевдодифференциальные уравненияФинансирование
Библиографические ссылки
- Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. 502 с.
- Бабич В.М. О коротковолновой асимптотике функции Грина для уравнения Гельмгольца // Математический сборник. 1964. Т. 65. С. 577–630.
- Бабич В.М., Булдырев В.С. Асимптотические методы в проблеме дифракции коротких волн. М.: Наука, 1972. 256 с.
- Мухина И.В. Приближенное сведение к уравнениям Гельмгольца уравнений теории упругости и электродинамики для неоднородных сред // ПММ. 1972. Т. 36. С. 667–671.
- Молотков Л.А. Исследование распространения волн в пористых и трещиноватых средах на основе эффективных моделей Био и слоистых сред. С.-Пб.-М.: Наука, 2001. 348 с.
- Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
- Новацкий В. Электромагнитные эффекты в твердых телах. М.: Мир, 1986. 160 с.
- Ткачева Л.А. Колебания плавающей упругой пластины, при периодических смещениях участка дна // Прикладная механика и техническая физика. 2005. Т. 46. № 5 (273). С. 166–179.
- Ткачева Л.А. Плоская задача о колебаниях плавающей упругой пластины под действием периодической внешней нагрузки // Прикладная механика и техническая физика. 2004. Т. 45. № 5 (273). С. 136–145.
- Ткачева Л.А. Поведение плавающей пластины при колебаниях участка дна // Прикладная механика и техническая физика. 2005. Т. 46. № 2 (270). С. 98–108.
- Ткачева Л.А. Взаимодействие поверхностных и изгибно-гравитационных волн в ледяном покрове с вертикальной стенкой // Прикладная механика и техническая физика. 2013. Т. 54. № 4 (320). С. 158–170.
- Бабешко В.А., Евдокимова О.В., Бабешко О. М., Рядчиков И.В. Метод проектирования неоднородных материалов и блочных конструкций // ДАН. 2018. Т. 482. № 4. С. 398–402. DOI: 10.1134/S1028335818100014
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О стадиях преобразования блочных элементов // ДАН. 2016. Т. 468. № 2. С. 154–158.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента в разложении решений сложных граничных задач механики // ДАН. 2020. Т. 495. С. 34–38. DOI: 10.31857/S2686740020060048
- Бабешко В.А., Бабешко О.М., Евдокимова О.В. О проблеме блочных структур академика М.А. Садовского // ДАН. 2009. Т. 427. № 4. С. 480–485.
Загрузки
Отправлено
Опубликовано
Как цитировать
Copyright (c) 2021 Бабешко В.А., Евдокимова О.В., Бабешко О.М., Хрипков Д.А., Бушуева О.А., Евдокимов В.С., Телятников И.С., Уафа С.Б.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.