О модели предоползневого образования в остроугольной клиновидной области
УДК
539.3DOI:
https://doi.org/10.31429/vestnik-17-2-9-13Аннотация
Рассматривается цилиндрическая область, перпендикулярное сечение которой представляет острый клин с углом раствора меньше или равным прямому. Предполагается, что область заполнена водонасыщенной средой, возможно, анизотропной, склонной к растеканию и побуждающей оползневое явление. Такие среды могут иметь вязкость, быть вязкоупругими и иметь переменные характеристики текучести, что является наиболее опасным в случаях предоползневых образований. Желая охватить все возможные случаи, рассматривается предельный вариант, состоящий в замене описанных сред наиболее текучей средой - жидкостью. Исследование проводится в предположении возможных динамических воздействий вибрационного характера. Таким образом, исследование свелось к изучению уравнения Гельмгольца в клиновидной области. На границе задаются условия Дирихле. Для исследования применяется метод блочного элемента, позволяющий решить граничную задачу в замкнутой форме.
Ключевые слова:
метод блочного элемента, граничная задача, уравнение Гельмгольца, псевдодифференциальные уравнения, клиновидная областьФинансирование
Библиографические ссылки
- Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. 502 с.
- Бабич В.М. О коротковолновой асимптотике функции Грина для уравнения Гельмгольца // Математический сборник. 1964. Т. 65. С. 577–630.
- Бабич В.М., Булдырев В.С. Асимптотические методы в проблеме дифракции коротких волн. М.: Наука, 1972. 256 с.
- Cerveny V., Molotkov I.A., Psencik I. Rey Method in seismology. Praha: Univerzita Karlova, 1977. 216 p.
- Мухина И.В. Приближенное сведение к уравнениям Гельмгольца уравнений теории упругости и электродинамики для неоднородных сред // ПММ. 1972. Т. 36. С. 667–671.
- Молотков Л.А. Исследование распространения волн в пористых и трещиноватых средах на основе эффективных моделей Био и слоистых сред. С.-Пб: Наука, 2001. 348 с.
- Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
- Новацкий В. Динамические задачи термоупругости. М.: Мир, 1970. 256 с.
- Новацкий В. Электромагнитные эффекты в твердых телах. М.: Мир, 1986. 160 с.
- Беркович В.Н. К теории смешанных задач динамики клиновидных композитов // ДАН. Т. 34. № 1. С. 172–176.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. К проблеме акустических и гидродинамических свойств среды, занимающей область трехмерного прямоугольного клина // Прикладная механика и техническая физика. 2019. Т. 60. № 6. С. 90–96. DOI: 10.15372/PMTF20190610
- Бабешко В.А., Евдокимова О.В., Бабешко О.М., Рядчиков И.В. Метод проектирования неоднородных материалов и блочных конструкций // ДАН. 2018. Т. 482. № 4. С. 398–402. DOI: 10.1134/S1028335818100014
- Бабешко В.А., Бабешко О.М., Евдокимова О.В. О пирамидальном блочном элементе // ДАН. 2009. Т. 428. № 1. С. 30–34.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О стадиях преобразования блочных элементов // ДАН. 2016. Т. 468. № 2. С. 154–158.
- Федорюк М.В. Метод перевала. М.: Наука, 1977. 368 с.
Загрузки
Отправлено
Опубликовано
Как цитировать
Copyright (c) 2020 Бабешко В.А., Евдокимова О.В., Бабешко О.М., Хрипков Д.А., Евдокимов В.С., Коваленко М.М.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.