Conjugate functional of Gauss curvature and equilibrium forms of liquid drop

Authors

  • Shcherbakov M.E. Kuban State University, Krasnodar, Russian Federation

UDC

517.5

EDN

VXILJM

DOI:

10.31429/vestnik-16-1-6-12

Abstract

The conjugate Gauss curvature functional is constructed. It is considered on the class of axisymmetrical surfaces generated by the curves represented by the graphs of functions whose domains are orthogonal to the axis of symmetry. The functional is applied to the variational study of equilibrium forms of liquid drops. It is responsible for the formation of intermediate layer between two phases, that of the liquid and of the gas. In the variational study presented the energies of surface tension, adhesion and of the gravitational forces are included. In contrast with classical approach it is not necessary to consider the adhesion’s angle as known beforehand. It can be calculated if the width of the intermediate layer is given.

Keywords:

axisymmetrical surface, Gauss curvature, mean curvature, equilibrium form, intermediate layer, surface tension, variational problem, conjugate Gauss curvature functional

Author info

  • Mikhail E. Shcherbakov

    преподаватель кафедры функционального анализа и алгебры Кубанского госуниверситета

References

  1. Chtchterbakov E. Free boundary value problem for ideal fluid with surface and wedging forces // Zeitschrift fur Analysis und ihre Anwendungen. 1998. Vol. 17, № 4. C. 937–961.
  2. Shcherbakov E. Equilibrium state of a pending drop with inter-phase layer // Zeitschrift fur Analysis und ihre Anwendungen. 2012. Vol. 31. P. 1–15.
  3. Shcherbakov E., Shcherbakov M. On equilibrium of the pendant drop taking into account the flexural rigidity of intermediate layer // Doklady Physics. 2012. Vol. 53. Iss. 6. P. 243–244.
  4. Shcherbakov E., Shcherbakov M. Equilibrium of the pendant drop its flexural rigidity of intermediate layer being accounted for // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. № 3. С. 87–94. [Shcherbakov E., Shcherbakov M. Equilibrium of the pendant drop its flexural rigidity of intermediate layer being accounted for. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation], 2016, no 3, pp. 87–94.]
  5. Shcherbakov E. Generalized minimal Liouville Surfaces // Int. Journal of Pure and Applied Mathematics. 2009. Vol. 54. №2. C. 179–192.
  6. Finn R. Equilibrium capillary surfaces. New York, Springer, 1986, 2016.
  7. Toda M. Willmore Energy: Brief Introduction and Survey. In: Toda M. (ed.) Willmore Energy and Willmore Conjecture. New York. CRC Press. A Chapman & Hall Book, 2018.

Downloads

Download data is not yet available.

Issue

Pages

6-12

Section

Mathematics

Dates

Submitted

January 9, 2019

Accepted

January 19, 2019

Published

March 30, 2019

How to Cite

[1]
Shcherbakov, M.E., Conjugate functional of Gauss curvature and equilibrium forms of liquid drop. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, т. 16, № 1, pp. 6–12. DOI: 10.31429/vestnik-16-1-6-12

Similar Articles

1-10 of 441

You may also start an advanced similarity search for this article.