Algorithm for Moving Point Vortices in a Bounded Area
UDC
519.642.3+532.527EDN
UWRQOGDOI:
10.31429/vestnik-17-1-2-61-68Abstract
The problem of calculating the paths of motion of a set of point vortices in an ideal incompressible liquid in a limited area is considered. The area is supposed to be piecewise smooth. The stream function at any given time is presented as a sum: the stream functions of point vortices and the potential of a simple layer, the density of which - the density of vortexes on the border - is required to determine. Regardless of time, the stream function harmoniously extends into the exterior of the area and is identically equal to a constant at the boundary, and, therefore, is a Roben potential. Briefly, the paper describes an algorithm for calculating the Roben potential. The unknown density of vortices is sought in the form of a linear combination of a complete system of potentials, and the coefficients are determined by the values of the Roben potential, as a solution to the inverse problem; determination of the coefficients reduces to solving a system of linear equations with a Gram matrix for a linearly independent system of functions. By the function of stream by tangents determine the trajectories of movements of vortices. The results of computational experiments of the motion of several point vortices in a square are presented. A computer analysis of the movement was carried out: two, four and eight point vortices, calculated the trajectories of their movement and found stationary and periodic, stable and unstable configurations.
Keywords:
point vortices, stream function, density of vortices, potential of the Roben, full system potentialReferences
- Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика, Ч. 1. М.: Физматгиз, 1963. 583 с. [Kochin, N.E., Kibel', I.A., Roze, N.V. Teoreticheskaya gidromekhanika, Ch. 1 [Theoretical Hydromechanics, Part 1]. Fizmatgiz, Moscow, 1963. (In Russian)]
- Алексеенко С.В., Куйбин П.А., Окулов В.Л. Введение в теорию концентрированных вихрей. Новосибирск: Институт теплофизики СО РАН, 2003. 504 с. [Alekseenko, S.V., Kuybin, P.A., Okulov, V.L. Vvedenie v teoriyu kontsentrirovannykh vikhrey [Introduction to Concentrated Vortex Theory]. Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003. (In Russian)]
- Борисов А.В., Мамаев И.С., Соколовский М.А. Фундаментальные и прикладные проблемы теории вихрей. М.-Ижевск: РХД, 2003. 704 с. [Borisov, A.V., Mamaev, I.S., Sokolovskiy, M.A. Fundamental'nye i prikladnye problemy teorii vikhrey [Fundamental and applied problems of the theory of vortices]. RKhD, Moscow–Izhevsk, 2003. (In Russian)]
- Козлов В.В. Общая теория вихрей. М.-Ижевск: РХД, 1998. 238 с. [Kozlov, V.V. Obshchaya teoriya vikhrey [General theory of vortices]. RKhD, Moscow–Izhevsk, 1998. (In Russian)]
- Сэффмэн Ф.Дж. Динамика вихрей. М.: Научный мир, 2000. 376 с. [Seffmen, F.Dzh. Dinamika vikhrey [Vortex dynamics]. Nauchnyy mir, Moscow, 2000. (In Russian)]
- Мелешко В.В., Константинов М.Ю. Динамика вихревых структур. Киев: Наукова думка, 1993. 282 с. [Meleshko, V.V., Konstantinov, M.Yu. Dinamika vikhrevykh struktur [The dynamics of vortex structures]. Naukova dumka, Kiev, 1993. (In Russian)]
- Aref H., Newton P.K., Stremler M., Tokieda Т., Vainchtein D.L. Vortex Crystals // TAM Reports 1008, 2002.
- Campbell L., Ziff R. A catalog of two-dimensional vortex patterns. Los Alamos Scientific Laboratory. Report No. La-7384-MS, 1978.
- Aref H., Vainchtein D.L. Asymmetric Equilibrium Patterns of Point Vortices // Nature. 1998. Vol. 392. P. 769–770.
- Смейл С. Математические проблемы следующего столетия / В сб. "Современные проблемы хаоса и нелинейности". М.-Ижевск: ИКИ, 2002. С. 280–298. [Smeyl, S. Matematicheskie problemy sleduyushchego stoletiya [Mathematical problems of the next century]. In: Sovremennye problemy khaosa i nelineynosti [Modern problems of chaos and nonlinearity]. IKI, Moscow–Izhevsk, 2002, pp. 280–298. (In Russian)]
- Борисов А.В., Мамаев И.С. Математические методы динамики вихревых структур. М.-Ижевск: ИКИ, 2005. 368 с. [Borisov, A.V., Mamaev, I.S. Matematicheskie metody dinamiki vikhrevykh struktur [Mathematical methods for the dynamics of vortex structures]. IKI, Moscow–Izhevsk, 2005. (In Russian)]
- Ashbee T.L., Esler J.G., McDonald N.R. Generalized Hamiltonian point vortex dynamics on arbitrary domains using the method of fundamental solutions // Journal of Computational Physics. 2013. Vol. 246. P. 289–303.
- Гельмгольц Г. Основы вихревой теории. М.-Ижевск: ИКИ, 2002. 82 с. [Gel'mgol'ts, G. Osnovy vikhrevoy teorii [Fundamentals of Vortex Theory]. IKI, Moscow–Izhevsk, 2002. (In Russian)]
- Лежнев В.Г., Марковский А.Н. О дижении точечных вихрей в ограниченной области // Спектральные и эволюционные задачи: Труды Крымской Осенней Математической Школы-Симпозиума. 2005. Т. 15. С. 128–132. [Lezhnev, V.G., Markovskiy, A.N. O dizhenii tochechnykh vikhrey v ogranichennoy oblasti [On the dilation of point vortices in a limited area]. Spektral'nye i evolyutsionnye zadachi: Trudy Krymskoy Osenney Matematicheskoy Shkoly-Simpoziuma [Spectral and evolutionary problems: Proceedings of the Crimean Autumn Mathematical School-Symposium], 2005, vol. 15, pp. 128–132. (In Russian)]
- Владимиров В.С. Уравнения математической физики. М.: Наука, 1981. 512 с. [Vladimirov, V.S. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Nauka, Moscow, 1981. (In Russian)]
- Лежнев А.В., Лежнев В.Г. Метод базисных потенциалов в задачах математической физики и гидродинамики. Краснодар: КубГУ, 2009. 111 с. [Lezhnev, A.V., Lezhnev, V.G. Metod bazisnykh potentsialov v zadachakh matematicheskoy fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)]
- Лежнев В.Г., Марковский А.Н. Проекционные алгоритмы вычисления потенциала Робена // Вычислительные методы и программирование. 2019. Т. 20. № 4. С. 378–385. [Lezhnev, V.G., Markovskiy, A.N. Proektsionnye algoritmy vychisleniya potentsiala Robena [Projection Algorithms for Calculating Robin Potential]. Vychislitel'nye metody i programmirovanie [Computational Methods and Programming], 2019, vol. 20, no. 4, pp. 378–385. (In Russian)]
- Лежнев М.В. Задачи и алгоритмы плоскопараллельных течений. Краснодар: КубГУ, 2009. 92 с. [Lezhnev, M.V. Zadachi i algoritmy ploskoparallel'nykh techeniy [Tasks and algorithms of plane-parallel flows]. Kuban State University, Krasnodar, 2009. (In Russian)]
- Марковский А.Н. Модели плоских вихревых течений и задачи экологии. Автореф. дис. ... канд. физ.-мат. наук. Краснодар, 2005. 84 с. [Markovskiy, A.N. Modeli ploskikh vikhrevykh techeniy i zadachi ekologii [Models of plane vortex flows and environmental problems]. Abstract of diss. .... cand. phys.-math. science. Krasnodar, 2005. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2020 Черная А.С., Ханазарян А.Д., Марковский А.Н.

This work is licensed under a Creative Commons Attribution 4.0 International License.