Forecasting of financial crises with the help of time series

Authors

  • Karmazin V.N. Kuban State University, Krasnodar, Russian Federation
  • Kirillov K.V. Kuban State University, Krasnodar, Russian Federation

UDC

519.22:336.144.36

Abstract

The authors analyze the results of the time series models application based on the distributions with “heavy tails” for forecasting financial crises in the market. It was shown by means of the actual data of stock exchange quotations that the use of such models leads to the improved evaluation of the fund market risk during financial crises as compared to the commonly used models. The disadvantages of classic time series models are discussed in this article on the basis of the numerical results obtained.

Keywords:

ARMA-GARCH model, Value-at-Risk (VaR), Average Value-at-Risk (AVaR), time series, distribution with

Funding information

Работа выполнена при поддержке стипендии Президента России.

Author info

  • Vladimir N. Karmazin

    канд. физ.-мат. наук, профессор кафедры прикладной математики Кубанского государственного университета

  • Kirill V. Kirillov

    аспирант кафедры прикладной математики Кубанского государственного университета

References

  1. Busse J. Volatility timing in mutual funds: Evidence from daily returns // Review of Financial Studies. 1999. Vol. 12. No. 5. P. 1009-1041.
  2. Mandelbrot B. The Variation of Certain Speculative Prices, Cambridge: MIT Press. 1964.
  3. Engle R. Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom in?ation // Econometrica. 1982. Vol. 50. P. 987-1008.
  4. Engle R. Bollerslev T. Modelling the persistence of conditional variances // Econometric Reviews. 1986. Vol. 5. No. 1. P. 1-50.
  5. Bollerslev T. Generalized autoregressive conditional heteroskedasticity // Journal of Econometrics. 1986. Vol. 31. No. 3. P. 307-327.
  6. Kim Y.S., Rachev S.T., Bianchi M.L., Fabozzi F.J. Tempered stable and tempered infinitely divisible GARCH models // Journal of Banking and Finance. 2010. No. 34. P. 2096-2109
  7. Kim Y.S., Rachev S.T., Chung D.M., Bianchi M.L. The modified tempered stable distribution, GARCH-models and option pricing // Probability and Mathematical Statistics. Vol. 29. No 1. 2009. P. 91-117.
  8. Kim Y.S., Rachev S.T., Bianchi M.L., Mitov I, Fabozzi F.J. Time series analysis for financial market meltdowns // Journal of Banking and Finance. 2011. No. 35. P. 1879-1891.
  9. Bianchi M.L., Rachev S.T., Kim Y.S., Fabozzi F.J. Tempered infinitely divisible distributions and processes // Theory of Probability and Its Applications, Society for Industrial and Applied Mathematics. (SIAM) 55(1). 2010. P. 58-86.
  10. Булдашев С.В. Статистика для трейдеров. Москва: Компания Спутник. 2003. 244 c.

Downloads

Download data is not yet available.

Issue

Pages

39-51

Section

Article

Dates

Submitted

May 19, 2013

Accepted

May 21, 2013

Published

June 24, 2013

How to Cite

[1]
Karmazin, V.N., Kirillov, K.V., Forecasting of financial crises with the help of time series. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2013, № 2, pp. 39–51.

Similar Articles

1-10 of 1046

You may also start an advanced similarity search for this article.