Identification of plane cracks in elastic medium
UDC
539.3Abstract
An approach has been offered, which is based on the development of some integral equality, on a set of particular solutions of equations of the anisotropic elasticity theory and its further application in inverse problems of the theory of cracks taking into account a priori information, stating that all cracks are located in the same plane. The procedure of identification has been developed based on the measurements of fields of displacements on the whole extension of a solid.
Funding information
Работа выполнена при поддержке РФФИ (02-01-01124).
References
- Andrieux S., B. Abda A, Jaoua M. Identification of planar cracks by complete overdetermined data: inversion formulae // Inverse Problems. 1996. №12. P. 553-563.
- Bannour T., B. Abda A, Jaoua M. A Semi-explisit algorithm for the reconstruction of 3D planar cracks // Inverse Problems. 1997. №13. P. 899-917.
- Tanaka M., Nakamura M., Yamagiwa K. Application of boundary element method for elastodynamics to defect shape identification // Math. Comput. Modeling. 1991. Vol. 15. №3-5. P. 295-302.
- Ватульян А.О., Коренский С.А. Метод линеаризации в геометрических обратных проблемах теории упругости // ПММ. 1997. Т. 61. Вып. 4. С. 639-646.
- Bostrem A. Acoustic scattering by a sound-hard rectangle // J. Acoust. Soc. Am. 1991. Vol. 90. No. 6. P. 3344-3347.
- Бабешко В.А. Тела с неоднородностями: случай совокупностей трещин // ДАН. 2000. Т. 373. №2. С. 191-193.
- Глушков Е.В., Глушкова Н.В. Дифракция упругих волн на пространственных трещинах произвольной в плане формы // ПММ. 1996. Т. 6. Вып. 2. С. 282-289.
- Alves C.J.S, Duong T.Ha. On inverse scattering by screens // Inverse Problems. 1995. No. 13. P. 1161-1176.
- Alves C.J.S, Duong T.Ha. Inverse scattering for elastic planar cracks // Inverse Problems. 1999. №15. P. 91-97.
- Казаков В.В., Сутин А.М. Использование эффекта модуляции ультразвука вибрациями для импульсной локализации трещин // Акуст. журнал. 2001. Т. 47. №3. С. 364-369.
- Гузь А.Н., Зозуля В.В. Упругие динамические односторонние контактные задачи с трением для тел с трещинами // Прикл. мех. 2002. Т. 38. №8. С. 3-45.
- Ватульян А.О., Ворович И.И., Соловьев А.Н. Об одном классе граничных задач в динамической теории упругости // ПММ. 2000. Т. 64. Вып. 3. С. 373-380.
- Козлов В.А., Мазья В.Г., Фомин А.В. Итерационный метод решения задачи Коши для эллиптических уравнений // ЖВМ и МФ. 1991. Т. 31. С. 45-52.
- Белоконь А.В., Наседкин А.В., Соловьев А.Н. Новые схемы конечно-элементного динамического анализа пьезоэлектрических устройств // ПММ. 2002. Т. 66. №3. С. 491-501.
Downloads
![](https://vestnik.kubsu.ru/public/journals/1/submission_6_6_coverImage_ru_RU.jpg)
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2003 Ватульян А.О., Соловьев А.Н.
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.