About the prediction of melting temperature of metal nanowires electrochemically deposited into the pores of anodic aluminum oxide
UDC
538.975:539.319:62 - 405.8Abstract
The melting point is important thermodynamic characteristic of metallic nanostructures embedded in a matrix. This article focuses on studying of the behavior of metallic threadlike nanocrystals near the melting point. In order to do this, the arrays of indium, tin, and zinc nanocrystals were electrochemically grown in porous anodic alumina matrices with various geometrical parameters and characterized by means of scanning electron microscopy and X-ray diffraction. Melting temperature of nanocrystals was determined experimentally by differential scanning calorimetry. Here we present a solution to the problem of predicting the melting point of the metal nanocrystals enclosed inside the pores of anodic alumina. This solution takes into account the effect of mechanical stresses caused by the differences between the thermal coefficients of linear expansion of the heterogeneity elements during heating. Numerical modeling has been performed for nanocomposites with indium, tin, and zinc nanocrystals. Dependence of melting temperature on the composite structural parameter associated with the concentration of nanocrystals in the bulk of the matrix has been investigated. The results of model calculations were compared with the experimental data.
Keywords:
anodic aluminum oxide, metal nanowires, filamentary composites, differential scanning calorimetry, melting temperatureFunding information
Работа выполнена при поддержке Министерства образования и науки Российской Федерации (122-ГЗ-МФЭ), РФФИ (13-08-00672-а, 14-08-00654-а) и Европейской программы FP7 (PIRSES-GA-2011-295273-NANEL).
References
- Jaya Sarkar, Gobinda Gopal Khan, Basumallick A. Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template // Bulletin Mater. Sci. 2007. Vol. 30. No. 3. P. 271-290.
- Gavrilov S., Nosova L., Sieber I., Belaidi A., Dloczik L., Dittrich Th. Synthesis of semiconductor nanowires by pulsed current electrodeposition of metal with subsequent sulfurization // Phys. Status Solidi A. 2005. Vol. 202. No. 8. P. 1497-1501.
- Xu S. H., Fei G. T., Zhang Y., Li X. F., Jin Z., Zhang L. D. Size-dependent melting behavior of indium nanowires // Phys. Lett. A. 2011. Vol. 375. P. 1746-1750.
- Wang X. W., Fei G. T., Zheng K., Jin Z., Zhang L. D. Size-dependent melting behavior of Zn nanowire arrays // Appl. Phys. Lett. 2011. Vol. 88, 173114, 3 p.
- Бардушкин В. В., Шиляева Ю. И., Яковлев В. Б. Концентрация напряжений и деформаций в пористозаполненном металлическими нитевидными нанокристаллами анодном оксиде алюминия // Деформация и разрушение материалов. 2013. № 10. С. 24-29. [Bardushkin V.V., Shilyaeva Yu.I., Yakovlev V.B. Koncentracija naprjazhenij i deformacij v poristozapolnennom metallicheskimi nitevidnymi nanokristallami anodnom okside aljuminija [Concentration of stresses and strains in porous anodic alumina filled with metallic nanowires]. Deformacija i razrushenie materialov [Deformation and destruction of materials], 2013, no. 10, pp. 24-29. (In Russian)]
- Шиляева Ю. И., Бардушкин В. В., Силибин М. В., Гаврилов С. А., Яковлев В. Б., Пятилова О. В. Влияние структуры и термоупругих свойств компонентов на средние напряжения в анодном оксиде алюминия с порами, заполненными металлическими нитевидными нанокристаллами // Неорганические материалы. 2013. Т. 49. № 7. С. 723-728. [Shilyaeva Yu.I., Bardushkin V.V., Silibin M.V., Gavrilov S.A., Yakovlev V.B., Pyatilova O.V. Vliyanie struktury i termouprugikh svoystv komponentov na srednie napryazheniya v anodnom okside alyuminiya s porami, zapolnennymi metallicheskimi nitevidnymi nanokristallami [Effect of the structure and thermoelastic properties of components on the average stress in anodic aluminum oxide having pores filled with metallic nanowires]. Neorganicheskie materialy [Inorganic materials], 2013, vol. 49, pp. 676-680. (In Russian)]
- Шиляева Ю. И., Бардушкин В. В., Гаврилов С. А., Силибин М. В., Яковлев В. Б., Пятилова О. В. Объемная плотность энергии деформации в пористозаполненном металлическими нитевидными нанокристаллами анодном оксиде алюминия // Журнал физической химии. 2013. Т. 87. № 11. С. 1889-1893. [Shilyaeva Yu.I., Bardushkin V.V., Silibin M.V., Gavrilov S.A., Yakovlev V.B., Pyatilova O.V. Ob"emnaya plotnost' energii deformatsii v poristozapolnennom metallicheskimi nitevidnymi nanokristallami anodnom okside alyuminiya [Bulk density of the energy of deformation in an anodic aluminum oxide with pores filled by threadlike metal nanocrystals]. Russ. J. Phys. Chem. A, 2013, vol. 87, pp. 1870-1874. (In Russian)]
- Бардушкин В. В., Шиляева Ю. И., Яковлев В. Б. Эффективные упругие характеристики пористозаполненного металлическими нитевидными нанокристаллами анодного оксида алюминия // Экологический вестник научных центров Черноморского экономического сотрудничества. 2013. № 2. С. 21-26. [Bardushkin V.V., Shilyaeva Yu.I., Yakovlev V.B. Effektivnye uprugiye kharakteristiki poristozapolnennogo metallicheskimi nitevidnymi nanokristallami anodnogo oksida aljuminija [Effective elastic characteristics of the highly ordered metal-filled anodic alumina]. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2013, no. 2, pp. 21-26. (In Russian)]
- Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina // Science. 1995. Vol. 268. P. 1466-1468.
- Гамбург Ю.Д. Гальванические покрытия. Справочник по применению. М.: Техносфера, 2006. 216 c. [Gamburg Yu.D. Galvanicheskie pokrytiya. Spravochnik po primeneniyu [Electroplated coatings. Handbook of the applications]. Moscow, Tehnosfera Publ., 2006, 216 p. (In Russian)]
- Lu K., Li Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal // Phys. Rev. Lett. 1998. Vol. 80. P. 4474-4477.
- Guisbiers G., Pereira S. Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures // Nanotechnology. 2007. Vol. 18, 435710, 6 p.
- Kinloch A.J. Adhesion and Adhesives: Science and Technology. London: Chapman and Hall, 1987. 441 p.
- Физические величины: Справочник // Под ред. Григорьева И.С., Мейлихова Е.З. // М.: Энергоатомиздат, 1991. 1232 с. [Grigor'ev I.S., Meilikhov E.Z. (Eds.) Fizicheskie velichiny: Spravochnik [Physical Quantities: A Handbook]. Moscow, Energoatomizdat, 1991, 1232 p. (In Russian)]
- Корольков А.М. Литейные свойства металлов и сплавов. М.: Издательство Академии наук СССР, 1960. 196 с. [Korol'kov A.M. Litejnye svojstva metallov i splavov [Casting properties of metals and alloys]. Moscow, Izd. Akad. Nauk Publ., 1960, 196 p. (In Russian)]
- Xia Z., Riester L., Sheldon B. W., Curtin A., Liang J., Yin A., Xu J. M. Mechanic properties of highly ordered nanoporous anodic alumina membranes // Rev. of Adv. Mater. Sci. 2004. Vol. 34. P. 131-139.
- Gu P., Miao H., Liu Z.T., Wu X.P., Zhao J.H. Investigation of elastic modulus of nanoporous alumina membrane // J. Mater. Sci. 2004. Vol. 39. P. 3369-3373.
- Fernandez-Romero L., Montero-Moreno J. M., Pellicer E., Peiro F., Cornet A., Morante J. R., Sarret M., Muller C. Assessment of the thermal stability of anodic alumina membranes at high temperatures // Mater. Chem. Phys. 2008. Vol. 111. P. 542-547.
- Шермергор Т. Д. Теория упругости микронеоднородных сред. М.: Наука, 1977. 399 с. [Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of elasticity of microinhomogeneous media]. Moscow, Nauka Publ., 1977, 399 p. (In Russian)]
- Бардушкин В., Яковлев В. Механика микроструктур (эффективные и локальные свойства текстурированных поликристаллов и композитов). Германия, Саарбрюккен: LAP (Lambert Academic Publishing), 2011. 164 с. [Bardushkin V., Yakovlev V. Mechanics of Microstructures (Effective and Local Properties of Textured Polycrystals and Composites). Germany, Saarbr"{u}ken, LAP (Lambert Academic Publishing), 2011, 164 p.]
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2014 Шиляева Ю.И., Бардушкин В.В., Гаврилов С.А., Силибин М.В., Яковлев В.Б., Боргардт Н.И., Волков Р.Л., Смирнов Д.И.

This work is licensed under a Creative Commons Attribution 4.0 International License.