Features of application of algorithm of construction of bidimentional orthonormalizational basis in procedure Gram-Schmidt orthogonalization

Authors

  • Babenko V.N. Krasnodar Higher Military Aviation School for Pilots, Krasnodar, Russian Federation

UDC

519.67

EDN

TKVQTJ

Abstract

At the decision of systems of the linear equations a method of QR-decomposition with use Gram-Schmidt orthogonalization there are cases of reception of results of calculations unacceptable on accuracy. For restraint of influence of the found out defect within the framework of procedure Gram-Schmidt orthogonalization we use algorithm of construction bidimentional orthonormalizational basis. In algorithm of construction bidimentional orthonormalizational basis machine-sensitive parameters are applied. The values of parameters established as a result of research provide the control over the order of argument of function specially used in used algorithm, construction of basis with guaranteed accuracy and high accuracy calculated with the help of QR-decomposition to the decision of system of the linear equations. They also block calculation of the decision of system with badly caused matrix and protect the user from reception of doubtful results of calculations. The last is illustrated with the example of system resulted in clause with Gilbert's badly caused matrix.

Keywords:

Gram-Schmidt orthogonalization, number of conditionality, linear variety, machine number, error of calculation, guaranteed accuracy

Author info

  • Viktor N. Babenko

    канд. физ.-мат. наук, доцент кафедры математики Краснодарского высшего военного авиационного училища летчиков

References

  1. Бабенко В.Н. Устойчивость ортогонализации Грама-Шмидта и способ ее повышения // Экологический вестник научных центров Черноморского экологического сотрудничества. 2014. №4 . С. 7-12. [Babenko V.N. Ustoychivost' ortogonalizatsii Grama-Shmidta i sposob ee povysheniya [Stability of Gram-Schmidt orthogonalization and a way of its increase]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekologicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2014, no. 4, pp. 7-12. (In Russian)]
  2. Бабенко В.Н. Алгоритм изменения индекса произведения отражений Хаусхолдера // Сиб. матем. журнал. Т. 32, №5. Деп. в ВИНИТИ за № 5350-В90, 59 с. [Babenko V.N. Algoritm izmeneniya indeksa proizvedeniya otrazheniy Khauskholdera [Algorithm of change of an index of product of Householder reflections]. Sibirskiy matematicheskiy zhurnal [Siberial Mathematical Journal], vol. 32, no. 5, Deposited ib VINITI no. 5350-V90, 59 p. (In Russian)]
  3. Годунов С.К. Решение систем линейных уравнений. Новосибирск, Наука, 1980. [Godunov S.K. Reshenie sistem linejnyh uravnenij [Solution of systems of linear equations]. Novosibirsk, Nauka Pub., 1980, 177 p. (In Russian)]
  4. Икрамов Х.Д. Несимметричная проблема собственных значений. Новосибирск: Наука, 1980. 177 с. [Ikramov Kh.D. Nesimmetrichnaya problema sobstvennykh znacheniy [Asymmetric eigenvalue problem]. Novosibirsk, Nauka Pub., 1980, 177 p. (In Russian)]
  5. Беклемишев Д.В. Дополнительные главы линейной алгебры. М.: Наука, 1983. 335 с. [Beklemishev D.V. Dopolnitel'nye glavy lineynoy algebry [Additional chapters of linear algebra]. Moscow, Nauka Pub., 1983, 335 p. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

21-25

Section

Article

Dates

Submitted

February 2, 2015

Accepted

February 8, 2015

Published

March 26, 2015

How to Cite

[1]
Babenko, V.N., Features of application of algorithm of construction of bidimentional orthonormalizational basis in procedure Gram-Schmidt orthogonalization. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, № 1, pp. 21–25.

Similar Articles

1-10 of 71

You may also start an advanced similarity search for this article.