Asymptotic solution of elastic waves scattering problem by circular interface crack
UDC
539.3EDN
TWTYMNAbstract
The present paper investigates the problem of an elastic wave scattering by a circular interface crack situated between two dissimilar half-spaces. The scattering by a crack is investigated by the boundary integral equation method and the integral approach, which can be generalized for layered composites. An explicit expression for the crack opening displacement of circular interface crack is derived for wavelengths of an incident wavefield larger than the diameter of the crack. For the case of a plane longitudinal wave diffraction at normal incidence to the interface an asymptotic solution is obtained. This asymptotic expression can be used in order to simulate wave scattering by a random distribution of small cracks and to estimate effective spring stiffness for spring models.
Keywords:
crack, diffraction, elastic waves, asymptotic, integral approachFunding information
Работа выполнена при поддержке Российского фонда фундаментальных исследований (12-01-33011-мол_вед_а).
References
- Ватульян А.О. Обратные задачи в механике деформируемого твердого тела. М: Физматлит, 2007. 224 c. [Vatulyan A.O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse problems of mechanics of deformable solid body]. Moscow, Fizmatlit Publ., 2007. 224 p. (In Russian)]
- Boström A. Review of hypersingular integral equation method for crack scattering and application to modeling of ultrasonic nondestructive evaluation // Applied Mechanics Reviews. 2003. No. 56. P. 383-405.
- Achenbach J.D. Effects of crack geometry and material behavior on scattering by cracks. Center for Quality Engineering and Failure Prevention Northwestern University, Technical Progress Report, 1989. 20 p.
- Baik J.M., Thompson R.B. Ultrasonic scattering from imperfect interfaces: a quasi-static model // Journal of Nondestructive Evaluation. 1984. No. 4. P. 177-196.
- Boström A., Wickham G.R. On the boundary conditions for ultrasonic transmission by partially closed cracks // Journal of Nondestructive Evaluation. 1991. No. 10. P. 139-149.
- Rokhlin S.I., Wang Y.J. Analysis of boundary conditions for elastic wave interaction with an interface between two solids // Journal of the Acoustical Society of America. 1991. No. 89. P. 503-515.
- Boström A., Golub M. Elastic SH wave propagation in a layered anisotropic plate with interface damage modelled by spring boundary conditions // Quarterly Journal of Mechanics and Applied Mathematics. 2009. No. 62. P. 39-52.
- Golub M. V. Propagation of elastic waves in layered composites with microdefect concentration zones and their simulation with spring boundary conditions // Acoustical Physics. 2010. Vol. 56. Iss. 6. P. 848-855.
- Krenk S., Schmidt H. Elastic wave scattering by a circular crack // Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1982. no. 308. P. 167-198.
- Бабешко В.А. Глушков Е.В. Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М: Наука, 1989. 344 c. [Babeshko V.A. Glushkov E.V., Zinchenko Zh.F. Dinamica neodnorodnych lineyno-uprugikh sred [Dynamics heterogeneous linearly elastic medium]. Moscow, Nauka Publ., 1989. 344 p. (In Russian)]
- Golub M.V., Boström A. Interface damage modelled by spring boundary conditions for in-plane elastic wave // Wave Motion. 2011. Vol. 48. No. 2. P. 105-115.
- Гринченко В.Г. Мелешко В.В. Гармонические колебания и волны в упругих телах. Киев: Наукова Думка, 1981. 284 c. [Grinchenko V.G. Meleshko V.V. Harmonicheskie kolebaniya i volny v uprugikh telakh [Harmonic oscillation and wave in elastic solid]. Kiev, Naukova Dumka Publ., 1981. 284 c. (In Russian)]
- Глушкова Н.В. Определение и учет сингулярных составляющих в задачах теории упругости: дисс. д-ра … физ.-мат. наук. Краснодар, 2000. 220 c. [Glushkova N.V. Opredelenie i uchet singulyarnyh sostavlyauschih v zadachah teorii uprugosti. Dis. doc. fiz.-mat. nauk. [The determination and the consideration of singular components for theory of elasticity. Phis.-math. sci. cand. diss.]. Krasnodar, 2000. 220 p. (In Russian)]
- Глушков Е.В., Глушкова Н.В., Ехлаков А.В. Математическая модель ультразвуковой дефектоскопии пространственных трещин // Прикладная математика и механика. 2002. №66. С. 147-156. [Glushkov E.V., Glushkova N.V., Ekhlakov A.V. Matematicheskaya model ultrazvukovoy defectoskopii prostranstvennykh treschin [The mathematical model ultrasonic non-destructive testing nonplanar cracks]. Prikladnaya matematica i mekhanika [Applied Mathematics and Mechanics], 2002, no. 66, pp. 141-149. (In Russian)]
- Ватсон Г. Н. Теория бесселевых функций. М: Из-во иностранной литературы, 1949. 798 c. [Watson G. N. Teoriya besselevikh funkciy [A treatise on the theory Bessel functions]. Moscow, Inostrannaya literatura Publ., 1949. 798 p. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2015 Дорошенко О.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.