Averaging of partial differential equations of the first order

Authors

  • Nazarov A.K. School no. 26, Novorossiysk, Russian Federation

UDC

517.955.8

Abstract

This article confirmed by the Krylov-Bogolyubov averaging for systems of partial differential equations of the first order, containing oscillating in time with the frequency ω1 terms, among which there are large proportional to ω with zero mean. Previously, for a narrower range of problems similar result was obtained in the joint work of the author of this article and V.B. Levenshtam. They considered the system of the same type, but do not depend on number equation coefficients. In this paper, it is a hard limit is removed. Upon confirmation of the averaging method used by the Krylov-Bogolyubov proved earlier by the author and V.B. Levenshtam averaging theorem Cauchy problem for systems of ordinary differential equations with large high-frequency terms, as well as the method of characteristics, allows to move from consideration of partial differential equations of the first order ordinary differential equations. Proven in this article theorem extends the theory of the averaging method Krylov-Bogolyubov to new classes of semilinear evolution systems of partial differential equations of the first order. Note that there are now quite a lot of work on the development of the theory of the averaging method for different classes of differential equations with large high-frequency terms.

Keywords:

averaging method, first-order partial differential equations, large high-frequency summands, method of characteristics, Cauchy problem

Author Biography

  • Artur K. Nazarov

    учитель математики и информатики средней общеобразовательной школы № 26 г. Новороссийск

References

  1. Боголюбов Н.Н. О некоторых статистических методах в математической физике. Львов: Изд. АН УССР, 1945. 139 с. [Bogolyubov N.N. O nekotorykh statisticheskikh metodakh v matematicheskoy fizike [On some statistical methods in mathematical physics]. Lviv, Izdatelstvo AN USSR Publ., 1945, 139 p. (In Russian)]
  2. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974. 504 с. [Bogolyubov N.N., Mitropol'skiy Yu.A. Asimptoticheskie metody v teorii nelineynykh kolebaniy [Asymptotic methods in the theory of nonlinear oscillations]. Moscow, Nauka Publ., 1974, 504 p. (In Russian)]
  3. Капикян А.К., Левенштам В.Б. Уравнения в частных производных первого порядка с большими высокочастотными слагаемыми // Жур. выч. мат. и мат. физ. 2008. Т. 48. № 11. С. 2024-2041. [Kapikyan A.K., Levenshtam V.B. Uravneniya v chastnykh proizvodnykh pervogo poryadka s bol'shimi vysokochastotnymi slagaemymi [Partial differential equations of the first order with large high-frequency terms]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [J. of Computational Mathematics and Mathematical Physics], 2008, vol. 48, no. 11, pp. 2024-2041. (In Russian)]
  4. Хома Г.П. Теорема об усреднении для гиперболических систем первого порядка // Укр. мат. журн. 1970. Т. 22. № 5. С. 699-704. [Khoma G.P. Teorema ob usrednenii dlya giperbolicheskikh sistem pervogo poryadka [Averaging theorem for hyperbolic systems of first order]. Ukrainskiy matematicheskiy zhurnal [Ukrainian Mathematical Journal], 1970, vol. 22, no. 5, pp. 699-704. (In Russian)]
  5. Юдович В.И. Вибродинамика и виброгеометрия механических систем со связями. Части I-III // Успехи механики. 2006. Т. 4. № 3. С. 26-158. [Yudovich V.I. Vibrodinamika i vibrogeometriya mekhanicheskikh sistem so svyazyami. Chasti I-III [Vibrodinamika vibration and the geometry of mechanical systems with constraints. Part I-III]. Uspekhi mekhaniki [The success of mechanics], 2006, vol. 4, no. 3, pp. 26-158. (In Russian)]
  6. Левенштам В.Б. Асимптотическое интегрирование дифференциальных уравнений, содержащих быстроосциллирующие слагаемые с большими амплитудами. I, II // Дифференц. уравнения. 2005. Т. 41. № 6, 8. С. 761-770, 1084-1091. [Levenshtam V.B. Asimptoticheskoe integrirovanie differentsial'nykh uravneniy, soderzhashchikh bystroostsilliruyushchie slagaemye s bol'shimi amplitudami. I, II [The asymptotic integration of differential equations containing rapidly oscillating terms with large amplitudes. I, II]. Differentsial'nye uravneniya [Differential Equations], 2005, vol. 41, no. 6, 8, pp. 761-770, 1084-1091. (In Russian)]
  7. Левенштам В.Б. Обоснование метода усреднения для параболических уравнений, содержащих быстроосциллирующие слагаемые с большими амплитудами // Изв. РАН. Сер. матем. 2006. Т. 70. № 2. С. 25-56. [Levenshtam V.B. Obosnovanie metoda usredneniya dlya parabolicheskikh uravneniy, soderzhashchikh bystroostsilliruyushchie slagaemye s bol'shimi amplitudami [Justification of the averaging method for parabolic equations containing rapidly oscillating terms with large amplitudes]. Izvestiya RAN. Seriya matematicheskaya [Izvestiya RAN. A series of mathematical], 2006, vol. 70, no. 2, pp. 25-56. (In Russian)]
  8. Левенштам В.Б. Дифференциальные уравнения с большими высокочастотными слагаемими. Ростов-на-Дону: Изд. ЮФУ, 2010. 415 с. [Levenshtam V.B. Differentsial'nye uravneniya s bol'shimi vysokochastotnymi slagaemimi [Differential equations with large high-frequency terms]. Rostov-on-Don, Izd. YuFU Publ., 2010, 415 p. (In Russian)]
  9. Басистая Д.А., Левенштам В.Б. Асимптотика решений обыкновенных дифференциальных уравнений с большими высокочастотными слагаемыми // Изв. вузов. Сев.-Кавк. регион. Естеств. науки. Спецвыпуск. Математика и механика сплошной среды. 2004. С. 46-48. [Basistaya D.A., Levenshtam V.B. Asimptotika resheniy obyknovennykh differentsial'nykh uravneniy s bol'shimi vysokochastotnymi slagaemymi [The asymptotic behavior of the solutions of ordinary differential equations with large high-frequency terms]. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennye nauki. Spetsvypusk. Matematika i mekhanika sploshnoy sredy [Math. universities. North-Caucasus region. Nature Science. Special Issue. Mathematics and continuum mechanics], 2004, pp. 46-48. (In Russian)]
  10. Боголюбов Н.Н. Теория возмущений в нелинейной механике // Сб. института строит. механики АН УССР. 1950. Вып. 4. С. 9-34. [Bogolyubov N.N. Teoriya vozmushcheniy v nelineynoy mekhanike [The perturbation theory in nonlinear mechanics]. Sbornik instituta stroitel'noy mekhaniki AN USSR [Proc. of the Institute of the USSR Academy of structural mechanics], 1950, iss. 4, pp. 9-34. (In Russian)]
  11. Митропольский Ю.А. Методы усреднения в нелинейной механике. Киев.: Наукова думка, 1971. 440 с. [Mitropol'skiy Yu.A. Metody usredneniya v nelineynoy mekhanike [Methods of averaging in nonlinear mechanics]. Kiev, Naukova dumka Publ., 1971, 440 p. (In Russian)]
  12. Капица П.Л. Динамическая устойчивость маятника при колеблющейся точке подвеса // ЖЭТФ. 1951. Т. 21. № 5. С. 588-599. [Kapitsa P.L. Dinamicheskaya ustoychivost' mayatnika pri koleblyushcheysya tochke podvesa [Dynamic stability of a pendulum with a vibrating point of suspension]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics], 1951, vol. 21, no. 5, pp. 588-599. (In Russian)]
  13. Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967. 472 с. [Demidovich B.P. Lektsii po matematicheskoy teorii ustoychivosti [Lectures on mathematical theory of stability]. Moscow, Nauka Publ., 1967, 472 p. (In Russian)]
  14. Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: Наука, 1964. 272 с. [Petrovskiy I.G. Lektsii po teorii obyknovennykh differentsial'nykh uravneniy [Lectures on the theory of ordinary differential equations]. Moscow, Nauka Publ., 1964, 272 p. (In Russian)]

Downloads

Issue

Pages

62-68

Section

Article

Dates

Submitted

December 10, 2015

Accepted

December 17, 2015

Published

December 28, 2015

How to Cite

[1]
Nazarov, A.K., Averaging of partial differential equations of the first order. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, № 4, pp. 62–68.

Similar Articles

1-10 of 1069

You may also start an advanced similarity search for this article.