Equilibrium state of the internal crack in infinite elastic wedge with the thin coating

Authors

  • Sobol B.V. Don State Technical University, Rostov-on-Don, Russian Federation
  • Rashidova E.V. Don State Technical University, Rostov-on-Don, Russian Federation

UDC

539.3

EDN

WUCSAM

Abstract

The research of stress concentration in the neighborhood of internal crack's tops, which is on a bisector of an infinite elastic wedge, is conducted. The normal efforts are applied to crack's coast for providing her opening. Wedge's sides are supported with a thin flexible coating, free from tension from outer side. Coating influence on an intense and deformable state of a wedge is modelled by a special boundary condition which correctness is confirmed experimentally. Mellin’s integral transformation has allowed to reduce the task to the solution of the singular integrated equation of the first kind with Cauchy's kernel of rather derivative function of crack opening. Solutions of the integral equation constructed by the collocation method. With various combinations of geometric and physical parameters of the problem. The aim of the research was to determine the values of the influence factor - a reduced stress intensity factor in the neighborhood of the crack's tops. Analysis of influences of task's geometrical and physical parameters on size of the studied parameter is carried. In particular, it is established that with increasing the wedge's angle, with unchanged other parameters, the values of the influence factor are increasing; the increasing in the thickness and hardness of the coating leads to a decrease of the influence factor; the increase of the relative crack's length or approaching to wedge's top implies an increase of influence factor. The known special cases of task are considered, their results are compared with available data published.

Keywords:

crack, infinite elastic wedge, thin coating, Mellin’s integral transformation, collocation method, stress intensity factor, influence factor

Authors info

  • Boris V. Sobol

    д-р тех. наук, профессор, заведующий кафедрой информационных технологий Донского государственного технического университета

  • Elena V. Rashidova

    канд. физ.-мат. наук, доцент, профессор кафедры информационных технологий Донского государственного технического университета

References

  1. Melan E. Zur plastizität des räumlichen kontinuums // Archive J. Appl. Mech., 1938. No. 9/2. P. 116-126.
  2. Рейсснер Э. Некоторые проблемы теории оболочек. Упругие оболочки. М.: Изд-во иностр. лит., 1962. 263 с. [Rejssner En. Nekotorye problemy teorii obolochek. Uprugie obolochki [On some problems in shell theory. Elastic casing]. Moscow, Inostr. lit. Publ., 1962, 263 p. (In Russian)]
  3. Koiter W., Warner T. On the nonlinear theory of thin elastic shells // Koninklijke Nederlandse Akademie van Wetenschappen, 1966. Vol. 69, No. 1. P. 1-54.
  4. Развитие теории контактных задач в СССР / Под ред. Л.А. Галина. М.: Наука, 1976. 493 c. [Razvitie teorii kontaktnyh zadach v SSSR [The development of the theory of contact problems in the USSR]. Moscow, Nauka Publ., 1976, 493 p. (In Russian)]
  5. Александров В.М., Мхитарян С.М. Контактные задачи для тел с тонкими покрытиями и прослойками. М.: Наука, 1979. 486 с. [Aleksandrov V.M., Mkhitaryan S.M. Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i proslojkami [Contact problems for bodies with thin coatings and interlayers]. Moscow, Nauka Publ., 1976, 493 p. (In Russian)]
  6. Акопян В.Н. Об одной смешанной задаче для составной плоскости, ослабленной трещиной // Изв. НАН Армении, механика. 1995. Т. 48, № 4. С. 57-65. [Akopyan V.N. Ob odnoj smeshannoj zadache dlja sostavnoj ploskosti, oslablennoj treshhinoj [On a mixed problem for a compound plane weakened by a crack]. Izv. NAN Armenii, Mehanika [Mech. Proc. National Acad. Sci Armenia], 1995, vol. 48, no. 4, pp. 57-65. (In Russian)]
  7. Арутюнян Л.А. Плоские задачи со смешанными краевыми условиями для составной плоскости с трещинами // Изв. НАН Армении. Механика, 2012. Т. 65, № 3. С. 5-9. [Arutyunyan L.A. Ploskie zadachi so smeshannymi kraevymi usloviyami dlya sostavnoj ploskosti s treshhinami [Plane problems with mixed boundary conditions for a composite plane with cracks]. Izv. NAN Armenii, Mekhanika [Mech. Proc. National Acad. Sci Armenia], 2012, vol. 65, no. 3, pp. 5-9. (In Russian)]
  8. Rizk A. Stress intensity factor for an edge crack in two bonded dissimilar materials under convective cooling // Theoretical and Appl. Fracture Mech. 2008. Vol. 49. No. 3. P. 251-267. doi: 10.1016/j.tafmec.2008.02.006
  9. Шацкий И.П. Растяжение пластины, содержащей прямолинейный разрез с шарнирно соединенными кромками // Прикладная механика и техническая физика, 1989. № 5. С. 163-165. [Shatskij I.P. Rastyazhenie plastiny, soderzhashhej pryamolinejnyj razrez s sharnirno soedinennymi kromkami [Stretching of a plate containing a rectilinear cut with pivotally connected edges]. Prikl. mehanika i tehnicheskaja fizika [J. Appl. Mechanics and Technical Physics], 1989, no. 5, pp. 163-165. (In Russian)]
  10. Antipov Y., Bardzokas D., Exadaktylos G. Partially stiffened elastic half-plane with an edge crack // International Journal of Fracture. 1997. Vol. 85. No. 3. P. 241-263. doi: 10.1023/A:1007428813410
  11. Cook T.S., Erdogan F. Stress in bounded material with a crack perpendicular to the interface // Int. J. Engng Sci. 1972. Vol. 10. No. 8. Р. 677-697. doi: 10.1016/0020-7225(72)90063-8
  12. Панасюк В.В., Саврук М.П., Дацышин А.П. Распределение напряжений около трещин в пластинах и оболочках. Киев: Наукова Думка, 1976. 443 c. [Panasyuk V.V., Savruk M.P., Dacyshin A.P. Raspredelenie napryazhenij okolo treshhin v plastinakh i obolochkakh [Distribution of stresses near cracks in plates and shells]. Kiev, Naukova Dumka Publ., 1976, 443 p. (In Russian)]
  13. Греков М.А., Даль Ю.М., Курочкин В.А. Предельное состояние упругой полосы с внутренней трещиной // Изв. РАН. Механика твердого тела. 1992. № 6. С. 148-155. [Grekov M.A., Dal' Yu. M., Kurochkin V.A. Predel'noe sostoyanie uprugoj polosy s vnutrennej treshhinoj [Limit state of an elastic strip with an internal crack]. Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela [J. Russ. Acad. Sci., Mechanics of Solids], 1992, no. 6, pp. 148-155. (In Russian)]
  14. Краснощеков А.А., Соболь Б.В. Равновесное состояние внутренней поперечной трещины в полубесконечном упругом теле с тонким покрытием // Изв. РАН. Механика твердого тела. 2016. № 1. С. 136-150. [Krasnoshhekov A.A., Sobol' B.V. Ravnovesnoe sostoyanie vnutrennej poperechnoj treshhiny v polubeskonechnom uprugom tele s tonkim pokrytiem [Equilibrium of an Internal Transverse Crack in a Semiinfinite Elastic Body with Thin Coating]. Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela [J. Russ. Acad. Sci., Mechanics of Solids], 2016, no. 1, pp. 136-150. (In Russian)]
  15. Справочник по коэффициентам интенсивности напряжений: В 2-х томах, Т. 1: Пер. с англ. / Под ред. Ю. Мураками. М.: Мир, 1990. 448 с. [Spravochnik po koehffitsientam intensivnosti napryazhenij: V 2-kh tomakh, T. 1 [Handbook on stress intensity factors: In 2 volumes, vol. 1], Moscow, Mir Publ., 1990, vol. 1, 448 p. (In Russian)]
  16. Wigglesworth L.A. Stress distribution in a notched plate // Mathematika. 1957. Vol. 4. No. 7. P. 76-96. doi: 10.1112/ S002557930000111X
  17. Irwin G.R. The crack-extension force for a crack at a free surface boundary // Report № 5120, Naval Research Lab., 1958.
  18. Bowie O.L. Rectangular tensile sheet with symmetric edge cracks // Trans. ASME. Ser. E. J. Appl. Mech. 1964. Vol. 31. No. 2. P. 208-212. doi: 10.1115/1.3629588
  19. Bowie O.L., Neal D.M. Single edge cracks in rectangular tensile sheet // Trans. ASME. Ser. E. J. Appl. Mech. 1965. Vol. 32. No. 3. P. 708-709. doi: 10.1115/1.3627290
  20. Srivastav R.P., Narain Prem. Certain two-dimensional problems of stress distributions in wedge-shaped elastic solids under discontinuous load // Proc. Cambridge Phil. Soc. 1965. Vol. 61. No. 4. P. 945-954. doi: 10.1017/S0305004100039347
  21. Srawley J.E., Gross B. Stress intensity factors for crackline-loaded edge-crack specimens // Mater. Res. and Stand. 1967. Vol. 7. No. 4. P. 155-162.
  22. Сметанин Б.И. Некоторые задачи о щелях в упругом клине и слое // Изв. АН СССР. Механика твердого тела. 1968. № 2. С. 115-122. [Smetanin B.I. Nekotorye zadachi o shhelyakh v uprugom kline i sloe [Certain Problems of Cracks in Elastic Wedge and Plate], Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela [J. Acad. Sci USSR, Mechanics of Solids], 1968, no. 2, pp. 115-122. (In Russian)]
  23. Сметанин Б.И. Об одной смешанной задаче теории упругости для клина // Прикладная математика и механика. 1968. Т. 32. Вып. 4. С. 708-714. [Smetanin B.I. Ob odnoj smeshannoj zadache teorii uprugosti dlya klina [On a Mixed Problem of Elasticity Theory for a Wedge] Prikl. Mat. Mekh. [J. Appl. Math. Mech], 1968, vol. 32, no 4, pp. 708-714. (In Russian)]
  24. Tamate О., Kondo Т. Stress singularities around a crack in an elastic wedge // Trans. Jap. Soc. Mech. Eng. 1978. Vol. 44. No. 379. P. 756-761. doi: 10.1299/kikai1938.44.756 [Tamate Î., Kondo Ò. Stress singularities around a crack in an elastic wedge. Trans. Jap. Soc. Mech. Eng., 1978, vol. 44, no. 379, pp. 756-761. doi: 10.1299/kikai1938.44.756]
  25. Александров В.М., Сметанин Б.И., Соболь Б.В. Тонкие концентраторы напряжений в упругих телах. М.: Физматлит, 1993. 224 c. [Aleksandrov V.M., Smetanin B.I., Sobol' B.V. Tonkie kontsentratory napryazhenij v uprugikh telakh [Thin stress concentrators in elastic bodies]. Moscow, FIZMATLIT Publ., 1993, 224 p. (In Russian)]
  26. Банцури Р.Д. Решение первой основной задачи теории упругости для клина, имеющего конечный разрез // Докл. АН СССР. 1966. Т. 167. № 6. С. 1256-1259. [Bantsuri R.D. Reshenie pervoj osnovnoj zadachi teorii uprugosti dlya klina, imeyushhego konechnyj razrez [Solution of the first fundamental problem of the theory of elasticity for a wedge having a finite cut]. Dokl. AN SSSR [DAN SSSR], 1966, vol. 167, no. 6, pp. 1256-1259.]
  27. Doran H.E. The wedge with a symmetric crack at the vertex in plane elastostatics // IMA J. Appl. Math. 1969. Vol. 5. No. 4. P. 363-372. doi: 10.1093/imamat/5.4.363 [Doran H.E. The wedge with a symmetric crack at the vertex in plane elastostatics. IMA J. Appl. Math., 1969, vol. 5, no. 4, pp. 363-372. doi: 10.1093/imamat/5.4.363]
  28. Храпков А.А. Бесконечный треугольный клин с надрезом на биссектрисе под действием сосредоточенных сил, приложенных к берегам надреза // Изв. АН СССР. Механика твердого тела. 1972. №5. С. 88-97. [Khrapkov A.A. Beskonechnyj treugol'nyj klin s nadrezom na bissektrise pod dejstviem sosredotochennykh sil, prilozhennykh k beregam nadreza [An endless triangular wedge with a notch on the bisector under the action of concentrated forces applied to the banks of the incision Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela [J. Acad. Sci USSR, Mechanics of Solids], 1972, no. 5, pp. 88-97. (In Russian)]
  29. Quchterlony F. Symmetric cracking of a wedge by concentrated load // Int. J. Engng Sci. 1977. Vol. 15. No. 2. P. 109-116. doi: 10.1016/0020-7225(77)90026-X
  30. Quchterlony F. Some stress intensity factors for self-similar cracks, derived from path-independent integrals // J. Elast. 1978. Vol. 8, No. 3. P. 259-271. doi: 10.1007/BF00130465
  31. Gregory R.D. The edge-cracked circular disc under symmetric pin-loading // Math. Proc. Cambridge Phil. Soc. 1979. Vol. 85. No. 3. P. 523-538. doi: 10.1017/S030500410005595X
  32. Stone S.F., Westmann R.A. Stress intensity factors for cracked wedges // Int. J. Solids and Struct. 1981. Vol. 17. No. 3. P. 345-358. doi: 10.1016/0020-7683(81)90068-8
  33. Садыхов А.Э. Клин с трещиной. Баку: Азерб. гос. пед. ин-т, 1979. 32 с. Деп. в ВИНИТИ 28.03.79. №1091. [Sadykhov A. Eh. Klin s treshhinoj [Cracked Wedge]. Azerb. Gos. Ped. Inst., Baku Dep. VINITI AN SSSR 28.03.79 [Baku State Ped. University Azerbaijan], 1979, no. 1091, 32 p. (in Russian).]
  34. Кипнис Л.А. Упругое равновесие клина с трещиной // Прикладная математика и механика. 1979. Т. 43, Вып. 1. С. 153-159. [Kipnis L.A. Uprugoe ravnovesie klina s treshhinoj [Elastic Equilibrium of a Wedge with a Crack]. Prikl. Mat. Mekh. [J. Appl. Math. Mech], 1979, vol. 43, no. 1, pp. 153-159. (In Russian)]
  35. Садыхов А.Э. Об одной задаче теории упругости для клина с полубесконечной трещиной под действием сосредоточенного момента // Прикладная механика. 1980. Т. 16. № 5. С. 91-96. [Sadykhov A. Eh. Ob odnoj zadache teorii uprugosti dlya klina s polubeskonechnoj treshhinoj pod dejstviem sosredotochennogo momenta [Elasticity-Theory Problem for Wedge with Semiinfinite Crack Subjected to Point Moment]. Prikl. Mekh. [Int. Appl.Mech.], 1980, vol. 16, no. 5, pp. 91-96. (In Russian)]
  36. Саврук М.П. Механика разрушения и прочность материалов. Т. 2: Коэффициенты интенсивности напряжений в телах с трещинами / Под ред. В.В. Панасюка. Киев: Наук. думка, 1988. 619 с. [Savruk M.P. Mekhanika razrusheniya i prochnost' materialov. T. 2: Koehffitsienty intensivnosti napryazhenij v telakh s treshhinami [Mechanics of failure and strength of materials. Vol. 2: Coefficients of stress intensity in bodies with cracks]. Kiev, Naukova Dumka Publ., 1988, 619 p. (In Russian)]
  37. Некислых Е.М., Острик В.И. Задача об упругом равновесии клина с трещинами на оси симметрии // Изв. РАН, механика твердого тела. 2010. № 5. С. 111-129. [Nekislykh E.M., Ostrik V.I. Zadacha ob uprugom ravnovesii klina s treshhinami na osi simmetrii [The problem of elastic equilibrium of a wedge with cracks on the axis of symmetry]. Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela [J. Russian Academy Sci., Mechanics of Solids], 2010, no. 5, pp. 111-129. (In Russian)]
  38. Пожарский Д.А., Молчанов А.А. Асимптотические решения смешанных задач для упругой полосы и клина // Вестник ДГТУ. 2010. Т. 10. № 4(47). С. 447-454. [Pozharskij D.A., Molchanov A.A. Asimptoticheskie resheniya smeshannykh zadach dlya uprugoj polosy i klina [Asymptotic solutions of mixed problems for an elastic strip and a wedge]. Vestnik DGTU [Vestnik Don State Technical University], 2010, vol. 10, no. 4(47), pp. 447-454. (In Russian)]
  39. Elliotis M.C., Charmpis D.C., Georgiou G.C. The singular function boundary integral method for an elastic plane stress wedge beam problem with a point boundary singularity // J. Appl. Math. and Computation. 2014. Vol. 248. P. 93-100. doi: 10.1016/j.amc.2014.09.090
  40. Лурье А. И. Теория упругости. М.: Наука, 1970. 940 с. [Lur'e A.I. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1970, 940 p. (In Russian)]
  41. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1963. 1100 с. [Gradshtejn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedenij [Tables of integrals, sums, series and products]. Moscow, Fizmatgiz, 1963, 1100 p. (In Russian)]
  42. Irwin G.R. Analysis of stresses and strains near the end of a crack traversing a plate // J. Appl. Mech. 1957. Vol. 24. No. 3. P. 361-364.

Downloads

Download data is not yet available.

Issue

Pages

74-85

Section

Article

Dates

Submitted

April 10, 2017

Accepted

April 27, 2017

Published

June 30, 2017

How to Cite

[1]
Sobol, B.V., Rashidova, E.V., Equilibrium state of the internal crack in infinite elastic wedge with the thin coating. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, № 2, pp. 74–85.

Similar Articles

1-10 of 483

You may also start an advanced similarity search for this article.