Modeling of disordered regions in the process of radiation defect formation

Authors

  • Bogatov N.M. Kuban State University, Krasnodar, Russian Federation
  • Grigorian L.R. Kuban State University, Krasnodar, Russian Federation
  • Klenevsky A.V. Kuban State University, Krasnodar, Russian Federation
  • Kovalenko M.S. Kuban State University, Krasnodar, Russian Federation

UDC

532.2:537.311:539.125

EDN

TVFZST

DOI:

10.31429/vestnik-16-1-59-65

Abstract

This article discusses the model of regions of disordering that are formed as a result of the separation of Frenkel pairs, taking into account the neutral and charged state of the pair. The probability of separation depends on the temperature and the position of the Fermi level in the band gap, therefore, the concentration of primary radiation defects also depends on the temperature and concentrations of donors, acceptors. The depth distribution profiles of primary radiation defects created by low-energy protons in silicon and the dependence of the parameters of the disordering regions on the proton energy are calculated. It is shown that the maximum of the distribution of the disordering regions created by protons is always spatially separated from the maxima of the interstitial silicon distribution, vacancies and divacancies, which allows changing the surface and volume properties of semiconductor structures in various ways. The results obtained are used to predict the characteristics of semiconductor devices operating under conditions of radiation exposure.

Keywords:

numerical model, radiation defects, protons, silicon, n-p junction

Authors info

  • Nikolai M. Bogatov

    д-р физ.-мат. наук, профессор, заведующий кафедрой физики и информационных систем физико-технического факультета Кубанского государственного университета, действительный член Академии инженерных наук РФ им. А.М. Прохорова

  • Leonty R. Grigorian

    канд. физ.-мат. наук, доцент кафедры физики и информационных систем физико-технического факультета Кубанского государственного университета

  • Aleksandr V. Klenevsky

    аспирант кафедры физики и информационных систем физико-технического факультета Кубанского государственного университета

  • Maksim S. Kovalenko

    канд. физ.-мат. наук, доцент кафедры физики и информационных систем физико-технического факультета Кубанского государственного университета

References

  1. Челядинский А., Комаров Ф. Дефектно-примесная инженерия в имплантированном кремнии // Успехи физических наук. 2003. Т. 173. №8. С. 813–846. [Chelyadinsky, A., Komarov, F. Defektno-primesnaya inzheneriya v implantirovannom kremnii [Defect-impurity engineering in implanted silicon]. Uspekhi Fizicheskikh Nauk [Physics-Uspekhi], 2003, vol. 173, no. 8, pp. 813–846. (In Russian)]
  2. Брудный В.Н. Радиационные эффекты в полупроводниках // Вестник Томского государственного университета. 2005. №285: Серия "Физика". С. 95–102. [Brudny, V.N. Radiatsionnyye effekty v poluprovodnikakh [Radiation effects in semiconductors]. Vestnik Tomskogo gosudarstvennogo universiteta [Tomsk State University Bulletin], 2005, no. 285: Series "Physics", pp. 95–102. (In Russian)]
  3. Соболев Н.А. Инженерия дефектов в имплантационной технологии кремниевых светоизлучающих структур с дислокационной люминесценцией // Физика и техника полупроводников. 2010. Т. 44. В. 1. С. 3–25. [Sobolev, N.A. Inzheneriya defektov v implantatsionnoy tekhnologii kremniyevykh svetoizluchayushchikh struktur s dislokatsionnoy lyuminestsentsiyey [Defect engineering in implantation technology of silicon light-emitting structures with dislocation luminescence]. Fizika i tekhnika poluprovodnikov [Physics and technology of semiconductors], 2010, vol. 44, no. 1, pp. 3–25. (In Russian)]
  4. Козлов В.А., Козловский В.В. Легирование полупроводников радиационными дефектами при облучении протонами и α-частицами // Физика и техника полупроводников. 2001. Т. 35. В. 7. С. 769–795. [Kozlov, V.A., Kozlovsky, V.V. Legirovaniye poluprovodnikov radiatsionnymi defektami pri obluchenii protonami i α-chastitsami [Doping of semiconductors with radiation defects when irradiated with protons and α-particles]. Fizika i tekhnika poluprovodnikov [Physics and technology of semiconductors], 2001, vol. 35, no. 7, pp. 769–795. (In Russian)]
  5. Agafonov Y.A., Bogatov N.M., Grigorian L.R., Зиненко В.И., Коваленко А.И., Коваленко М.С., Колоколов Ф.А. Effect of Radiation-Induced Defects Produced by Low-Energy Protons in a Heavily Doped Layer on the Characteristics of n+-p-p+ Si Structures // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2018. Vol. 12. No. 3. P. 499–503.
  6. Вавилов В.С., Киселев В.Ф., Мукашев Б.Н. Дефекты в кремнии и на его поверхности. М.: Наука. 1990. 216 с. [Vavilov, V.S., Kiselev, V.F., Mukashev, B.N. Defekty v kremnii i na yego poverkhnosti [Defects in silicon and on its surface]. Moscow, Nauka, 1990. (In Russian)]
  7. Кинчин Г.Х., Пиз Р.С. Смещение атомов твердых тел под действием излучения // Успехи физ. наук. 1956. Т. 60. №4. C. 590–615. [Kinchin, G.Kh., Pease, R.S. Smeshcheniye atomov tverdykh tel pod deystviyem izlucheniya [Displacement of atoms of solids under the action of radiation]. Uspekhi Fizicheskikh Nauk [Physics-Uspekhi], 1956, vol. 60, no. 4, pp. 590–615. (In Russian)]
  8. Lindhard J. Nielson V., Scharff M., Thomson P.V. Integral equations covering radiation effects notes an atomic collision II // Kgl. Danske Vid. Selsk. Mat. Fys. Medd. 1963. Vol. 33. No. 10. P. 14–42.
  9. Кузнецов Н.В., Соловьев Г.Г. Радиационная стойкость кремния. М.: Энергоатомиздат, 1989. 96 с. [Kuznetsov, N.V., Soloviev, G.G. Radiatsionnaya stoykost' kremniya [Radiation resistance of silicon]. Moscow, Energoatomizdat, 1989. (In Russian)]
  10. Bogatov N.M., Kovalenko M.S. Calculation of Frenkel Pairs Separation, Formed in Silicon as a Result of Ionizing Particles Irradiation // AASCIT Journal of Physics. 2017. Vol. 3. No. 3. P. 13–17.
  11. Bogatov N.M. Radiation defects in silicon grown by the Czochralski method // Surface Investigation X-Ray, Synchrotron and Neutron Techniques. 1999. Vol. 15. No. 3. P. 561–571.
  12. Вавилов В.С., Кив А.Е., Ниязова О.Р. Механизмы образования и миграции дефектов в полупроводниках. М.: Наука. 1981. 368 с. [Vavilov, V.S., Kiv, A.E., Niyazova, O.R. Mekhanizmy obrazovaniya i migratsii defektov v poluprovodnikakh [Mechanisms of formation and migration of defects in semiconductors]. Moscow, Nauka, 1981. (In Russian)]
  13. Van Lint V.A., Leadon R.E., Colwell J.F. Energy dependence of displacement effects in semiconductors // IEEE Trans. of Nucl. Sci. 1972. Vol. NS-19. No. 6. P. 181–185.
  14. Van Lint V.A., Leadon R.E. Implications of cluster model of neutron effects in silicon // Lattice Defects in Semiconductors. Conf. 1974. London-Bristol. Institute of Physics. 1975. P. 227–232.
  15. Буренков А.Ф., Комаров Ф.Ф., Кумахов М.А., Темкин М.М. Таблицы параметров пространственного распределения ионно-имплантированных примесей (теория, метод расчета, таблицы). Минск.: БГУ. 1980. 352 с. [Burenkov, A.F., Komarov, F.F., Kumakhov, M.A., Temkin M.M. Tablitsy parametrov prostranstvennogo raspredeleniya ionno-implantirovannykh primesey (teoriya, metod rascheta, tablitsy) [Tables of parameters of the spatial distribution of ion-implanted impurities (theory, calculation method, tables)]. Minsk, BSU, 1980. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

59-65

Section

Physics

Dates

Submitted

January 13, 2019

Accepted

January 21, 2019

Published

March 30, 2019

How to Cite

[1]
Bogatov, N.M., Grigorian, L.R., Klenevsky, A.V., Kovalenko, M.S., Modeling of disordered regions in the process of radiation defect formation. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, т. 16, № 1, pp. 59–65. DOI: 10.31429/vestnik-16-1-59-65

Similar Articles

1-10 of 208

You may also start an advanced similarity search for this article.