Аналитическое и численное моделирование стационарной краевой задачи диффузии-конвекции-распада для однородного слоя на основе уравнений турбулентной диффузии
УДК
539.3DOI:
https://doi.org/10.31429/vestnik-17-3-37-47Аннотация
В целях систематического сравнения и тестирования разработаны аналитическая и численная модели стационарной краевой задачи для уравнений турбулентной диффузии для однородного слоя. Аналитическая модель построена на основе решения краевой задачи в образах Фурье и обращении интегрального представления с помощью теории вычетов. Модель содержит ряд важных в теоретическом отношении лемм. В численной модели вычисление интеграла Фурье основано на формулах Гаусса-Кронрода высокого порядка.
В двумерном случае сравнительные расчеты показали хорошее совпадение результатов в ближней и средней зоне. Точность расчетов можно варьировать на несколько порядков. В плоском случае численный расчет интеграла значительно проще аналитического способа, что делает его более предпочтителен для инженерных и серийных научных расчетов.
Приведены расчеты функции концентрации вещества для двух задач конвекции-диффузии-распада, реализованные указанными методами.
Ключевые слова:
стационарная турбулентная диффузия в слое, краевая задача третьего рода, функция Грина, преобразование Фурье, теория вычетов, численное интегрированиеИнформация о финансировании
Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2020 г. (№ г.р. 01201354241) при частичной поддержке гранта РФФИ и администрации Краснодарского края (проект 19-41-230011 р_а).
Библиографические ссылки
- Самарский А.А., Вабищевич П.Н. Численные методы решения задач конвекции-диффузии. М.: Книжный дом "Либроком", 2015. 248 с. [Samarsky, A.A., Vabishchevich, P.N. Numerical methods for solving convection-diffusion problems. Librokom, Moscow, 2015. (In Russian)]
- Самаров Ш.Ш. Точные и приближенные аналитические методы решения прямых, контактных и обратных задач теплопроводности. Автореф. дисс. ... канд. физ.-мат. наук. Душанбе. 2004. 20 с. [Samarov, Sh.Sh. Exact and approximate analytical methods for solving direct, contact and inverse problems of heat conduction. Abstract ... cand. physical-mat. sciences. Dushanbe. 2004. (In Russian)]
- Бабешко В.А., Павлова А.В., Бабешко О.М., Евдокимова О.В. Математическое моделирование экологических процессов распространения загрязняющих веществ. Краснодар: КубГУ, 2009. 138 с. [Babeshko, V.A., Pavlova, A.V., Babeshko, O.M., Evdokimova, O.V. Mathematical modeling of ecological processes of the spread of pollutants. Krasnodar, Kuban State University, 2009. (In Russian)]
- Бекман И.Н. Высшая математика: математический аппарат диффузии. М.: Издательство Юрайт. 2018. 397 с. [Beckman, I.N. Higher mathematics: the mathematical apparatus of diffusion. Yurayt Publishing House, Moscow. 2018. (In Russian)]
- Краснов М.Л., Киселев А.И., Макаренко Г.И. Функции комплексного переменного. 3 изд. М.: Физматлит. 2003. 208 с. [Krasnov, M.L., Kiselev, A.I., Makarenko, G.I. Complex variable functions. 3rd ed. Fizmatlit, Moscow, 2003. (In Russian)]
- Международная библиотека математических подпрограмм IMSL. Режим доступа: https:// www.roguewave.com/products-services/imsl-numerical-libraries (дата обращения: 15.08.2020). [International library of mathematical subroutines IMSL. Available at: https:// www.roguewave.com/products-services/imsl-numerical-libraries (date accessed: 15.08.2020).]
- Notaris S.E. An overview of results on the existence and nonexistence and the error term of Gauss–Kronrod quadrature formulas / R.V.M. Zahar (ed.), Approximation and Computation, Birkhäuser (1995). P. 485–496.
- Кособуцкая Е.В. Некоторые модели распространения опасных загрязняющих веществ в стационарных условиях. Автореф. дис. ... канд. физ.-мат. наук. Краснодар.1998. 16 с. [Kosobutskaya, E.V. Some models of the spread of hazardous pollutants in stationary conditions. Abstract ... cand. physical-mat. sciences, Krasnodar, 1998. (In Russian)]
- Сыромятников П.В., Кривошеева М.А., Лапина О.Н., Нестеренко А.Г., Никитин Ю.Г. Стационарные процессы диффузии-конвекции-распада в однородном полупространстве // Экологический вестник научных центров Черноморского экономического сотрудничества. 2019. Т. 16. № 4. C. 31–42. DOI: 10.31429/vestnik-16-4-31-42 [Syromyatnikov, P.V., Krivosheeva, M.A., Lapina, O.N., Nesterenko, A.G., Nikitin, Yu.G. Statsionarnyye protsessy diffuzii-konvektsii-raspada v odnorodnom poluprostranstve [Stationary diffusion-convection-decay processes in a homogeneous half-space]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2019, vol. 16, no. 4, pp. 31–42. DOI: 10.31429/vestnik-16-4-31-42 (In Russian)]
Скачивания

Загрузки
Даты
Поступила в редакцию
Принята к публикации
Публикация
Как цитировать
Лицензия
Copyright (c) 2020 Кривошеева М.А., Лапина О.Н., Нестеренко А.Г., Никитин Ю.Г., Сыромятников П.В.

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.