Стационарные процессы диффузии-конвекции-распада в однородном полупространстве

Авторы

  • Сыромятников П.В. Кубанский государственный университет, Краснодар, Russian Federation
  • Кривошеева М.А. Кубанский государственный университет, Краснодар, Russian Federation
  • Лапина О.Н. Кубанский государственный университет, Краснодар, Russian Federation
  • Нестеренко А.Г. Кубанский государственный университет, Краснодар, Russian Federation
  • Никитин Ю.Г. Кубанский государственный университет, Краснодар, Russian Federation

УДК

539.3

DOI:

https://doi.org/10.31429/vestnik-16-4-31-42

Аннотация

Разработаны алгоритмы построения символов Фурье функций Грина стационарных краевых задач 1, 2, 3 рода для однородного диффузионного полупространства, аналога задачи второго рода для двух сцепленных полупространств, исследованы их основные свойства. Предложены простые практические приемы для построения физически адекватного, убывающего на бесконечности решения. Для краевой задачи третьего рода показано, что при определенных граничных условиях возможно появление вещественных и чисто мнимых полюсов у символа функции Грина. Рассчитаны трехмерные модельные задачи для всех рассмотренных краевых задач, позволяющие обнаружить сходства и отличия решений. При наличии вещественных полюсов решение существенно отличается от всех предыдущих и качественно сходно с картинами аномальной диффузии в сложных средах.

Ключевые слова:

стационарная турбулентная диффузия, краевые задачи, полупространство, диффузия-конвекция-распад, функция Грина, преобразование Фурье

Финансирование

Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2019 г. (№ г.р. 01201354241) при частичной поддержке гранта РФФИ и администрации Краснодарского края (проект 19-41-230011 р_а).

Информация об авторах

Павел Викторович Сыромятников

д-р физ.-мат. наук, ведущий научный сотрудник лаборатории математики и механики краснодарского отделения Южного научного центра РАН, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: syromyatnikov_pv@mail.ru

Маргарита Александровна Кривошеева

магистрант второго года обучения кафедры математического моделирования Кубанского государственного университета

e-mail: margarita.krivoscheeva@gmail.com

Ольга Николаевна Лапина

канд. физ.-мат. наук, доцент кафедры вычислительных технологий Кубанского государственного университета

e-mail: olga_ln@mail.ru

Александр Григорьевич Нестеренко

канд. физ.-мат. наук, доцент кафедры физики информационных систем Кубанского государственного университета

e-mail: agnest@mail.ru

Юрий Геннадиевич Никитин

канд. физ.-мат. наук, доцент кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

e-mail: yug@fpm.kubsu.ru

Библиографические ссылки

  1. Бекман И.Н. Высшая математика: математический аппарат диффузии: учебник для бакалавриата и магистратуры. М.: Издательство Юрайт, 2018. 397 с.
  2. Степаненко С.Н., Волошин В.Г., Типцов С.В. Решение уравнения турбулентной диффузии для стационарного точечного источника // Український гідрометеорологічний журнал. 2008. № 3. С. 13–24.
  3. Сыромятников П.В., Кривошеева М.А., Нестеренко А.Г., Никитин Ю.Г., Лапина О.Н. Модель распространения загрязняющих веществ в многослойной среде с периодическим источником излучения // Экологический вестник научных центров Черноморского экономического сотрудничества. 2019. Т. 16. № 3. C. 54–62. DOI: 10.31429/vestnik-16-3-54-62
  4. Бабешко В.А., Павлова А.В., Бабешко О.М., Евдокимова О.В. Математическое моделирование экологических процессов распространения загрязняющих веществ. Краснодар: Кубанский государственный университет, 2009. 138 с.
  5. Приказ Министерства природных ресурсов и экологии Российской Федерации от 6 июня 2017 года № 273 "Об утверждении методов расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе". Режим доступа: http://docs.cntd.ru/document/456074826 (дата обращения: 28.11.2019)
  6. Давыдов С.А., Земсков А.В., Тарлаковский Д.В. Двухкомпонентное упруго-диффузионное полупространство под воздействием нестационарных возмущений // Экологический вестник научных центров Черноморского экономического сотрудничества. 2014. № 2. C. 31–38.
  7. Франк-Каменецкий Д.А. Основы макрокинетики. Диффузия и теплопередача в химической кинетике. М.: Издательский Дом Интеллект, 2008. 408 с.
  8. Перепухов А.М., Кишенков О.В., Меньшиков Л.И., Максимычев А.В., Александров Д.А. Проявление эффекта аномальной диффузии в поровых жидкостях // Прикладная физика Труды МФТИ. 2015. Т. 7. № 1. С. 174–183.
  9. Международная библиотека математических подпрограмм IMSL. Режим доступа: https://www.roguewave.com/products-services/imsl-numerical-libraries (дата обращения: 28.11.2019).

Загрузки

Выпуск

Раздел

Механика

Страницы

31-42

Отправлено

2019-11-30

Опубликовано

2019-12-11

Как цитировать

Сыромятников П.В., Кривошеева М.А., Лапина О.Н., Нестеренко А.Г., Никитин Ю.Г. Стационарные процессы диффузии-конвекции-распада в однородном полупространстве // Экологический вестник научных центров Черноморского экономического сотрудничества. 2019. Т. 16, №4. С. 31-42. DOI: https://doi.org/10.31429/vestnik-16-4-31-42