Development of mathematical models of systems of protection data on the basis of the multistage systems of diophantine equations

Authors

  • Osipyan V.O. Kuban State University, Krasnodar, Russian Federation
  • Litvinov K.I. Kuban State University, Krasnodar, Russian Federation
  • Zhuk A.S. Kuban State University, Krasnodar, Russian Federation

UDC

519.72+004

EDN

TDXIMZ

DOI:

10.31429/vestnik-16-3-6-15

Abstract

The objective necessity of improvement of information security systems (SPI) in the conditions of development of information and telecommunication technologies is shown. Theorems which allow to describe the properties of parametric solutions of multistage systems of Diophantine equations necessary for the development of mathematical models of SPI on their basis are given. The theorem generalizing the known Frolov's theorem is presented, and the author's theorem on the basis of which the mathematical model of SPI containing Diophantine difficulties is developed is given.

A new approach to the development of SPI generalizing the principle of construction of public key cryptosystems is proposed. One part of the conditional identity is used for the direct transformation of the original message, and the other part - for the inverse transformation. A new concept of equivalence of ordered sets of numbers or parameters with a given dimension and degree is introduced.

Mathematical models of cryptosystems developed on the basis of two-parameter solutions of multistage systems of Diophantine equations, in particular, - equations of the fifth degree with the number of variables equal to twelve are presented. The described mathematical models demonstrate the potential of using Diophantine equations for the development of SPI with a high degree of reliability. These models allow to build asymmetric GIS, and the system public key. Such systems contain Diophantine difficulties admitting the existence of a countable set of equally probable keys.

Keywords:

information technologies, information security system, information encryption, symmetric cryptosystem, public key cryptosystem, multi-level system of Diophantine equations, Diophantine difficulties, Diophantine set, Diophantine representation

Funding information

Работа выполнена при финансовой поддержке гранта РФФИ (проект 19-01-00596).

Authors info

  • Valery O. Osipyan

    д-р физ.-мат. наук, доцент, профессор кафедры информационных технологий Кубанского государственного университета

  • Kirill I. Litvinov

    аспирант кафедры информационных технологий Кубанского государственного университета

  • Arseny S. Zhuk

    старший преподаватель кафедры вычислительных технологий Кубанского государственного университета

References

  1. Shannon C. Communication theory of secrecy systems // Bell System Techn. J. 1949. Vol. 28. Iss. 4. P. 656–715. DOI: 10.1002/j.1538-7305.1949.tb00928.x
  2. Alpers A., Tijdeman R. The two-dimensional Prouhet–Tarry–Escott problem // J. of Number Theory. 2007. Vol. 123. Iss. 2. P. 403–412. DOI: 10.1016/j.jnt.2006.07.001.
  3. Матиясевич Ю.В. Десятая проблема Гильберта. М.: Издательская фирма "Физико-математическая литература", ВО Наука, 1993. 224 с. [Matiyasevich, Yu.V. Desyataya problema Gil'berta [Hilbert's tenth problem]. Fiziko-matematicheskaya literatura, Moscow, 1993. (In Russian)]
  4. Осипян В.О. Моделирование систем защиты информации содержащих диофантовы трудности. Разработка методов решений многостепенных систем диофантовых уравнений. Разработка нестандартных рюкзачных криптосистем. LAMBERT Academic Publishing. 2012. 344 с. [Osipyan, V.O. Modelirovanie sistem zashchity informatsii soderzhashchikh diofantovy trudnosti. Razrabotka metodov resheniy mnogostepennykh sistem diofantovykh uravneniy. Razrabotka nestandartnykh ryukzachnykh kriptosistem [Modeling information security systems containing Diophantine difficulties. Development of methods for solving multi-degree systems of diophantine equations. Development of custom backpack cryptosystems]. LAMBERT Academic Publishing, Moscow, 2012. (In Russian)]
  5. Осипян В.О. Математическое моделирование систем защиты данных на основе диофантовых уравнений // Прикаспийский журнал: управление и высокие технологии. 2018. № 1. С. 151–160. [Osipyan, V.O. Matematicheskoe modelirovanie sistem zashchity dannykh na osnove diofantovykh uravneniy [Mathematical modeling of data protection systems based on diophantine equations]. Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii [Pre-Caspian J.: Management and High Technologies], 2018, no. 1, pp. 151–160. (In Russian)]
  6. Осипян В.О., Григорян Э.С. Метод параметризации диофантовых уравнений и математическое моделирование систем защиты данных на их основе // Прикаспийский журнал. 2019. № 1. С. 164–172. [Osipyan, V.O., Grigoryan, E.S. Metod parametrizatsii diofantovykh uravneniy i matematicheskoe modelirovanie sistem zashchity dannykh na ikh osnove [The method of parameterization of diophantine equations and mathematical modeling of data protection systems based on them]. Prikaspiyskiy zhurnal [Pre-Caspian J.], 2019, no. 1, pp. 164–172. (In Russian)]
  7. Осипян В.О., Спирина С.Г., Арутюнян А.С., Подколзин В.В. Моделирование ранцевых криптосистем, содержащих диофантовую трудность // Чебышевский сборник. 2010. Т. 11. № 1. С. 209–216. [Osipyan, V.O., Spirina, S.G., Arutyunyan, A.S., Podkolzin, V.V. Modelirovanie rantsevykh kriptosistem, soderzhashchikh diofantovuyu trudnost' [Modeling knapsack cryptosystems containing diophantine difficulty]. Chebyshevskiy sbornik [Chebyshevskii Sbornik], 2010, vol. 11, no. 1, pp. 209–216. (In Russian)]
  8. Cassels J.W.S. On a Diophantine Equation // Acta Arithmetica. 1960. Vol. 6. Iss. 1. P. 47–52. DOI: 10.4064/aa-6-1-47-52
  9. Carmichael R.D. The Theory of Numbers and Diophantine Analysis. New York, 1959. 118 p.
  10. Chernick J. Ideal solutions of the Tarry-Escott problem // The American Mathematical Monthly. 1937. Vol. 44. Iss. 10. P. 626–633. DOI: 10.2307/2301481
  11. Dickson L.E. History of the Theory of Numbers. New York, 1971.
  12. Dorwart H.L., Brown O.E. The Tarry-Escott problem // Amer. Math. Monthly. 1937. Vol. 44. Iss. 10. P. 613–626. DOI: 10.2307/2301480
  13. Gloden A. Mehgradige Gleichungen // Groningen. 1944. pp. 104.
  14. Алферов А.П., Зубов А.Ю., Кузьмин А.С., Черемушкин А.В. Основы криптографии. М.: Гелиос АРВ, 2002. 480 с. [Alferov, A.P., Zubov, A.Yu., Kuz'min, A.S., Cheremushkin, A.V. Osnovy kriptografii [Cryptography Basics]. Gelios ARV, Moscow, 2002. (In Russian)]
  15. Саломаа А. Криптография с открытым ключом. М.: Мир, 1995. 318 с. [Salomaa, A. Kriptografiya s otkrytym klyuchom [Public key cryptography]. Mir, Moscow, 1995. (In Russian)]
  16. Шнайер Б. Прикладная криптография: Протоколы, алгоритмы, исходные тексты на языке Си. М.: Триумф, 2002. 816 с. [Shnayer, B. Prikladnaya kriptografiya: Protokoly, algoritmy, iskhodnye teksty na yazyke Si [Applied Cryptography: Protocols, Algorithms, C Source Texts]. Triumf, Moscow, 2002. (In Russian)]
  17. Koblitz N. A Course in Number Theory and Cryptography. New York: Springer-Verlag, 1987. 235 p.

Downloads

Download data is not yet available.

Issue

Pages

6-15

Section

Mathematics

Dates

Submitted

August 22, 2019

Accepted

September 3, 2019

Published

September 30, 2019

How to Cite

[1]
Osipyan, V.O., Litvinov, K.I., Zhuk, A.S., Development of mathematical models of systems of protection data on the basis of the multistage systems of diophantine equations. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, т. 16, № 3, pp. 6–15. DOI: 10.31429/vestnik-16-3-6-15

Similar Articles

1-10 of 1084

You may also start an advanced similarity search for this article.