Closedness of the Biharmonic System of Basic Potentials
UDC
517.518.32+517.956.224+519.635.1EDN
ZSSZMWDOI:
10.31429/vestnik-17-1-2-20-26Abstract
The shift systems of the fundamental solution of biharmonic equation are considered. The shift sequence belongs to the complement of the bounded single-bond domain $Q$, so that all system functions satisfy the biharmonic equation in $Q$. The space of biharmonic functions $G_{2}(Q)$ is introduced as a closure in the $L_{2}(Q)$ norm of the linear shell of all kinds of shifts of the fundamental solution of biharmonic equation. The following problem is considered: what conditions the countable sequence of shifts must have so that the linear shell closure matches the entire $G _ {2} (Q) $ space, or, in other words, when is the considered system complete in $G _ {2} (Q)$? The problem for the harmonic case was considered by V.G. Lezhnev, he introduced a sufficient basis condition and proved the completeness and linear independence of shift systems of the fundamental solution of Laplace's equation.The work generalizes the basis condition to the biharmonic case and proves the closedness and linear independence of biharmonic system. The basis condition is related to the singularity condition of biharmonic functions. The proof relies on the property of continuity of potentials with a biharmonic nucleus and on the Rikier's boundary value problem solution.
Keywords:
harmonic functions, biharmonic functions, complete potential systems, method of basic potentials (MBP), method of fundamental solutions (MFS), projection methodsReferences
- Купрадзе В.Д., Алексидзе М.А. Метод функциональных уравнений для приближенного решения некоторых граничных задач // Ж. вычисл. матем. и матем. физ. 1964. Т. 4. № 4. С. 683–715. [Kupradze, V.D., Aleksidze M.A. The method of functional equations for the approximate solution of certain boundary value problems. U.S.S.R. Comput. Math. Math. Phys., 1964, vol. 4. iss. 4, pp. 82–126.]
- Купрадзе В.Д. О приближенном решении задач математической физики // Успехи математических наук. 1967. Т. 22. № 2. С. 59–107. [Kupradze, V.D. On the approximate solution of problems in mathematical physics. Russian Math. Surveys, 1967, vol. 22, iss. 2, pp. 58–108.]
- Алексидзе М.А. Решение граничных задач методом разложения по неортогональным функциям. М.: Наука, 1978. 352 с. [Aleksidze, M.A. Reshenie granichnykh zadach metodom razlozheniya po neortogonal'nym funktsiyam [The solution of boundary problems by the method of expansion in non-orthogonal functions]. Nauka, Moscow, 1978. (In Russian)]
- Лежнев А.В., Лежнев В.Г. Метод базисных потенциалов в задачах математической физики и гидродинамики. Краснодар: КубГУ, 2009. 111 с. [Lezhnev, A.V., Lezhnev, V.G. Metod bazisnykh potentsialov v zadachakh matematicheskoy fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. KubGU, Krasnodar, 2009. (In Russian)]
- Fairweather G., Johnston R.L. The method of fundamental solutions for problems in potential theory. In: Baker C.T.H., Miller G.F. (eds.) Treatment of Integral Equations by Numerical Methods, Academic Press, New York, 1982.
- Bogomolny A. Fundamental solutions method for elliptic boundary value problems // J. Num. Anal. 1985. Vol. 22. Iss. 4. P. 644–669.
- Алексидзе М. А. Фундаментальные функции в приближенных решениях граничных задач. М.: Наука, 1991. 352 с. [Aleksidze, M. A. Fundamental'nye funktsii v priblizhennykh resheniyakh granichnykh zadach [Fundamental functions in approximate solutions of boundary value problems]. Nauka, Moscow, 1991. (In Russian)]
- Лежнев В.Г. Аппроксимация обратных задач ньютонова потенциала / В сб. Численне методы анализа. М.: МГУ, 1997. С. 52–67. [Lezhnev, V.G. Approksimatsiya obratnykh zadach n'yutonova potentsiala [Approximation of the inverse problems of the Newtonian potential]. In: Chislenne metody analiza [Numerical analysis methods]. MGU, Moscow, 1997, pp. 52–67. (In Russian)]
- Лежнев В.Г. Функция тока задачи плоского обтекания, потенциал Робена и внешняя задача Дирихле // Докл. РАН. 2004. Т. 394. № 5. С. 615–617. [Lezhnev V.G. Stream function of the two-dimensional flow problem, Robin potential, and the exterior Dirichlet problem. Doklady Physics, 2004, vol. 49, no. 2, pp. 116–118.]
- Лежнев В.Г. Выделение гармонической составляющей / В сб. Численный анализ: теория, приложения, программы: Сборник научных трудов. М.: МГУ, 1999. С. 90–95. [Lezhnev, V.G. Vydelenie garmonicheskoy sostavlyayushchey [Isolation of the harmonic component]. In: Chislennyy analiz: teoriya, prilozheniya, programmy: Sbornik nauchnykh trudov [Numerical analysis: theory, applications, programs: Collection of scientific papers]. MGU, Moscow, 1999, pp. 90–95. (In Russian)]
- Karageorghis A., Fairweather G. The Method of Fundamental Solutions for the Numerical Solution of the Biharmonic Equation // J. of Computational Physics. 1987. Vol. 69. P. 434–459.
- Alves C.J.S., Chen C.S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems // Advances in Computational Mathematics. 2005. Vol. 23. P. 125–142.
- Dou Fangfang, Li Zi-Cai, Chen C.S., Zhaolu Tian. Analysis on the MFS for biharmonic equations // Appl. Math. Comput. 2018. Vol. 339. P. 346–366.
- Sakakibara K. Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition // Applications of Mathematics. 2017. Vol. 62. Iss. 4. P. 297–317.
- Bialecki B., Karageorghis A. A Legendre Spectral Galerkin Method For The Biharmonic Dirichlet Problem // SIAM J. Sci. Comput. 2000. Vol. 22. Iss. 5. P. 1549–1569.
- Chen J.T., Wu C.S., Lee Y.T., Chen K.H. On the equivalence of the Trefftz method and MFS for Laplace and biharmonic equations // Computers and Mathematics with Applications. 2007. Vol. 53. Iss. 6. P. 851–879.
- Шапеев В.П., Беляев В.А. Решение краевых задач для уравнений с частными производными в треугольных областях // Выч. мет. и програм. 2018. Т. 19. С. 96–111. [Shapeev, V.P., Belyaev, V.A. Reshenie kraevykh zadach dlya uravneniy s chastnymi proizvodnymi v treugol'nykh oblastyakh [Solution of boundary value problems for partial differential equations in triangular domains]. Vychislitel'nye metody i programirovanie [Computational methods and programming], 2018, vol. 19, pp. 96–111. (In Russian)]
- Лежнев В.Г., Марковский А.Н. Проекционный алгоритм краевой задачи неоднородного уравнения Ламе // Вестник Самарского гос. тех. ун-та. Сер. Физ.-мат. науки. 2011. Т. 1. № 22. С. 236–240. [Lezhnev, V.G., Markovskiy, A.N. Proektsionnyy algoritm kraevoy zadachi neodnorodnogo uravneniya Lame [The projection algorithm of the boundary value problem of the inhomogeneous Lame equation]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya Fiziko-matematicheskie nauki [Bulletin of the Samara State Technical University. Series Physics and Mathematics], 2011, vol. 1, no. 22, pp. 236–240. (In Russian)]
- Лежнев В.Г., Марковский А.Н. Проекционные алгоритмы вихревых 2D течений в сложных областях // Таврический Вестник информатики и математики. 2015. Т. 1. № 26. С. 42–49. [Lezhnev, V.G., Markovskiy, A.N. Proektsionnye algoritmy vikhrevykh 2D techeniy v slozhnykh oblastyakh [Projection Algorithms of 2D Vortex Flows in Complex Areas]. Tavricheskiy Vestnik informatiki i matematiki [Tavrichesky Vestnik Informatiki i Matematiki], 2015, vol. 1, no. 26, pp. 42–49. (In Russian)]
- Лежнев В.Г., Марковский А.Н. Метод базисных потенциалов для неоднородного бигармонического уравнения // Вестник Самарского госуниверситета. Естественно научная серия. 2008. Т. 8. № 1. С. 127–139. [Lezhnev, V.G., Markovskiy, A.N. Metod bazisnykh potentsialov dlya neodnorodnogo bigarmonicheskogo uravneniya [The method of basic potentials for an inhomogeneous biharmonic equation]. Vestnik Samarskogo gosuniversiteta. Estestvenno nauchnaya seriya [Bulletin of Samara State University. Naturally Scientific Series], 2008, vol. 8, no. 1, pp. 127–139. (In Russian)]
- Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с. [Vladimirov, V.S. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Nauka, Moscow, 1988. (In Russian)]
- Соболев С. Л. Введение в теорию кубатурных формул. М.: Наука, 1974. 810 с. [Sobolev, S. L. Vvedenie v teoriyu kubaturnykh formul [Introduction to the theory of cubature formulas]. Nauka, Moscow, 1974. (In Russian)]
- Бицадзе А.В. О полигармонических функциях // Докл. АН СССР. 1987. Т. 294. № 3. С. 521–525. [Bitsadze, A.V. O poligarmonicheskikh funktsiyakh [On polyharmonic functions]. Doklady AN SSSR [Reports of the USSR Academy of Sciences], 1987, vol. 294, no. 3, pp. 521–525. (In Russian)]
- Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1983. 391 с. [Mikhaylov, V.P. Differentsial'nye uravneniya v chastnykh proizvodnykh [Partial differential equations]. Nauka, Moscow, 1983. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2020 Марковский А.Н.

This work is licensed under a Creative Commons Attribution 4.0 International License.