Energy Streamlines and the Power Density Vector Accompanying Wave Excitation by a Piezoelectric Transducer in a Layered Phononic Crystal

Authors

  • Fomenko S.I. Kuban State University, Krasnodar, Russian Federation
  • Golub M.V. Kuban State University, Krasnodar, Russian Federation
  • Shpak A.N. Kuban State University, Krasnodar, Russian Federation
  • Glinkova S.A. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

EDN

HHIBGA

DOI:

10.31429/vestnik-17-1-2-48-60

Abstract

The use of periodic composite structures has a great potential for improving sensors/actuators and self-adjusting optics, as well as for active vibration suppression and energy storage systems. At the same time, the employment of dielectric elastomers offers even greater possibilities since they provide tools for the active control of wave energy fluxes. The mathematical formulation of the problem considers more general state equations for piezoelectric bodies. Namely, the absence of symmetry in elastic and piezoelectric tensors is taken into account. The present study investigates the features of elastic wave excitation by a surface piezoelectric transducer (generally made of dielectric elastomer) in multi-layered periodic composites or so-called phononic crystals. A hybrid approach is used to solve the boundary value problem, which involves application of the spectral element method and the boundary integral equation method. Employing the energy streamlines and the power density vector, wave phenomena associated with the interaction of a piezoelectric transducer with a layered phononic crystal at frequencies belonging to four frequency ranges (band gaps, pass bands and the frequency ranges, in which only a quasi-transverse or quasi-longitudinal waves propagate without attenuation) are analyzed.

Keywords:

elastic waves, waveguide, dielectric elastomer, piezoelectric transducer, hybrid scheme, energy streamlines, Umov-Poynting vector

Funding information

Работа выполнена при поддержке Российского фонда фундаментальных исследований и Администрации Краснодарского края (проект 19-41-230012).

Authors info

  • Sergei I. Fomenko

    канд. физ.-мат. наук, доцент кафедры прикладной математики Кубанского государственного университета

  • Mihail V. Golub

    д-р физ.-мат. наук, ведущий научный сотрудник Института математики, механики и информатики Кубанского государственного университета

  • Alisa N. Shpak

    канд. физ.-мат. наук, младший научный сотрудник Института математики, механики и информатики Кубанского государственного университета

  • Sofia A. Glinkova

    аспирант кафедры математических и компьютерных методов Кубанского государственного университета

References

  1. Giurgiutiu V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Second edition. Elsevier Academic Press, 2014. P. 1012.
  2. Матвеенко В.П., Клигман Е.П., Юрлов М.А., Юрлова Н.А. Моделирование и оптимизация динамических характеристик smart-структур с пьезоматериалами // Физическая мезомеханика. 2012. №. 1. С. 75–85. [Matveenko, V.P., Kligman, E.P., Yurlov, M.A., Yurlova, N.A. Modelirovanie i optimizaciya dinamicheskih harakteristik smart-struktur s p'ezomaterialami [Modeling and optimization of dynamic characteristics of smart-structures with piezomaterials]. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2012, no. 1, pp. 75–85. (In Russian)]
  3. Raghavan A., Cesnik C.E.S. Review of guided wave structural health monitoring // The Shock and Vibration Digest. 2007. Vol. 39. Iss. 2. P. 91–114.
  4. Alleyne D.N., Cawley P. The interaction of Lamb waves with defects // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992. Vol. 1. P. 381–397.
  5. Eremin A.A., Glushkov E.V., Glushkova N.V., Lammering R. Guided wave time-reversal imaging of macroscopic localized inhomogeneities in anisotropic composites // Structural Health Monitoring, 2019. Vol. 18. Iss. 5–6. P. 1803–1819.
  6. Eremin A.A., Golub M.V., Glushkov E.V., Glushkova N.V. Identification of delamination based on the lamb wave scattering resonance frequencies // NDT & E International. 2019. Vol. 103. P. 145–153.
  7. Веселаго В.Г. Волны в метаматериалах: их роль в современной физике // Успехи физических наук. 2011. № 11. С. 1201–1205. [Veselago, V.G. Volny v metamaterialah: ih rol' v sovremennoj fizike [Waves in metamaterials: their role in modern physics]. Uspekhi fizicheskih nauk [Advances in Physical Sciences], 2011, no. 11, pp. 1201–1205. (In Russian)]
  8. Никитов С.А., Григорьевский А.В., Григорьевский В.И. Особенности распространения поверхностных акустических волн в двумерных фононных кристаллах на поверхности кристалла ниобата лития // Радиотехника и электроника. 2011. № 7. С. 876–888. [Nikitov, S.A., Grigor'evskij, A.V., Grigor'evskij, V.I. Osobennosti rasprostraneniya poverhnostnyh akusticheskih voln v dvumernyh fononnyh kristallah na poverhnosti kristalla niobata litiya [Features of the propagation of surface acoustic waves in two-dimensional phonon crystals on the surface of a lithium niobate crystal]. Radiotekhnika i elektronika [Radio Engineering and Electronics], 2011, no. 7, pp. 876–888. (In Russian)]
  9. Galich P.I., Rudykh S. Shear wave propagation and band gaps in finitely deformed dielectric elastomer laminates: Long wave estimates and exact solution // Journal of Applied Mechanics. 2018. Vol. 87. P. 21–28.
  10. Li J., Slesarenko V., Galich P.I., Rudykh S. Oblique shear wave propagation in finitely deformed layered composites // Mechanics Research Communications. 2018. Vol. 87. P. 21–28.
  11. Умов Н.А. Уравнения движения энергии в телах. Одесса: Типогр. Ульриха и Шульце, 1874. 56 с. [Umov, N.A. Uravneniya dvizheniya energii v telah [The equations of motion of energy in bodies]. Tipogr. Ul'riha i SHul'ce, Odessa, 1874. (in Russian)]
  12. Умов Н.А. Избранные сочинения. М.–Л.: Гостехиздат, 1950. 574 с. [Umov, N.A. Izbrannye sochineniya [Selected Works]. Gostekhizdat, Moscow, Leningrad, 1950. (In Russian)]
  13. Киселев А.П. Поток энергии упругих волн. Записки научного семинара ЛОМИ // 1979. № 89. С. 120–123. [Kiselev, A.P. Potok energii uprugih voln [The flow of energy of elastic waves]. Zapiski nauchnogo seminara LOMI [Notes of the LOMI Scientific Seminar], 1979, no. 89, pp. 120–123. (In Russian)]
  14. Глушков Е.В. Распределение энергии поверхностного источника в неоднородном полупространстве // Прикладная математика и механика. 1983. № 47. С. 70–75. [Glushkov, E.V. Raspredelenie energii poverhnostnogo istochnika v neodnorodnom poluprostranstve [Energy distribution of a surface source in an inhomogeneous half-space]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1983, no. 47, pp. 70–75. (In Russian)]
  15. Лежнев В.Г., Данилов Е.А. Задачи плоской гидродинамики. Краснодар: КубГУ, 2000. 91 с. [Lezhnev, V.G., Danilov, E.A. Zadachi ploskoj gidrodinamiki [Problems of flat hydrodynamics]. Kuban State University, Krasnodar, 2000. (In Russian)]
  16. Лежнев А.В., Лежнев В.Г. Метод базисных потенциалов в задачах математической физики и гидродинамики. Краснодар: КубГУ, 2009. 111 с. [Lezhnev, A.V., Lezhnev, V.G. Metod bazisnyh potencialov v zadachah matematicheskoj fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)]
  17. Лежнев В.Г., Марковский А.Н. Проекционные алгоритмы вихревых {2D течений в сложных областях // Таврический вестник информатики и математики. 2015. № 26. С. 42–49. [Lezhnev, V.G., Markovskij, A.N. Proekcionnye algoritmy vihrevyh {2D techenij v slozhnyh oblastyah [Projection Algorithms of Vortex {2D Flows in Complex Areas]. Tavricheskij vestnik informatiki i matematiki [Tauride J. of Informatics and Mathematics], 2015, no. 26, pp. 42–49. (In Russian)]
  18. Голуб М.В., Шпак А.Н., Бюте И., Фритцен К.П. Моделирование гармонических колебаний и определение резонансных частот полосового пьезоэлектрического актуатора методом конечных элементов высокого порядка точности // Вычислительная механика сплошных сред. 2015. № 4. С. 397–407. [Golub, M.V., Shpak, A.N., Byute, I., Fritcen, K.P. Modelirovanie garmonicheskih kolebanij i opredelenie rezonansnyh chastot polosovogo p'ezoelektricheskogo aktuatora metodom konechnyh elementov vysokogo poryadka tochnosti [Modeling harmonic oscillations and determining the resonant frequencies of a strip piezoelectric actuator using the finite element method of high order of accuracy]. Vychislitel'naya mekhanika sploshnyh sred [Computational mechanics of continuous media], 2015, no. 4, pp. 397–407. (In Russian)]
  19. Бабешко В.А., Глушков Е.В., Глушкова Н.В. Анализ волновых полей, возбуждаемых в упpугом стpатифициpованном полупpостpанстве, повеpхностными источниками // Акустический журнал. 1986. № 3. С. 366–371. [Babeshko, V.A., Glushkov, E.V., Glushkova, N.V. Analiz volnovyh polej, vozbuzhdaemyh v uppugom stpatificipovannom poluppostpanstve, povephnostnymi istochnikami [Analysis of wave fields excited in elastic stratified half-space, surface sources]. Akusticheskij zhupnal [Acoustic J.], 1986, no. 3, pp. 366–371. (In Russian)]
  20. Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 344 с. [Babeshko, V.A., Glushkov, E.V., Zinchenko, Zh.F. Dinamika neodnorodnyh linejno-uprugih sred [Dynamics of inhomogeneous linear elastic media]. Nauka, Moscow, 1989. (In Russian)]
  21. Глушков Е.В., Глушкова Н.В. Интегральные преобразования и волновые процессы. Краснодар: Кубанский государственный университет, 2017. 201 с. [Glushkov, E.V., Glushkova, N.V. Integral'nye preobrazovaniya i volnovye processy [Integral transformations and wave processes]. Kuban State University, Krasnodar, 2017. (In Russian)]
  22. Golub M.V., Shpak A.N. Semi-analytical hybrid approach for the simulation of layered waveguide with a partially debonded piezoelectric structure // Applied Mathematical Modelling. 2019. Vol. 65. P. 234–255.
  23. Fomenko S.I., Golub M.V., Chen A. In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals // Journal of Sound and Vibration. 2019. Vol. 439. P. 219–240.
  24. Фоменко С.И., Голуб М.В., Александров А.А. Численно устойчивый метод определения волновых полей и запрещенных зон в слоистых фононных кристаллах // Вычислительная механика сплошных сред. 2017. № 10. С. 235–244. [Fomenko, S.I., Golub, M.V., Aleksandrov, A.A. Chislenno ustojchivyj metod opredeleniya volnovyh polej i zapreshchennyh zon v sloistyh fononnyh kristallah [A numerically stable method for determining wave fields and band gaps in layered phonon crystals]. Vychislitel'naya mekhanika sploshnyh sred [Computational mechanics of continuous media], 2017, no. 10, pp. 235–244. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

48-60

Section

Mechanics

Dates

Submitted

October 28, 2019

Accepted

November 29, 2019

Published

March 31, 2020

How to Cite

[1]
Fomenko, S.I., Golub, M.V., Shpak, A.N., Glinkova, S.A., Energy Streamlines and the Power Density Vector Accompanying Wave Excitation by a Piezoelectric Transducer in a Layered Phononic Crystal. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 1, pp. 48–60. DOI: 10.31429/vestnik-17-1-2-48-60

Similar Articles

1-10 of 228

You may also start an advanced similarity search for this article.