Numerical-analytical method for solving boundary value problems for the system of Nernst-Planck and Poisson equations

Authors

UDC

544.638.2:001.891.573

DOI:

https://doi.org/10.31429/vestnik-19-3-6-16

Abstract

Electromembrane systems, are used for desalination at electrolyte solution concentrations ranging from 1 to 100 mol/m3. In a theoretical study of increasing the efficiency of the desalination process, mathematical modeling is used in the form of a boundary value problem for the system of Nernst-Planck and Poisson (NPP) equations, which refers to "hard" problems that are difficult to solve numerically. This is caused by the appearance of a small parameter at the derivative in the Poisson equation in a dimensionless form, and, correspondingly, a boundary layer in ion-exchange membranes, where concentrations and other characteristics of the desalination process change exponentially. It is for this reason that the numerical study of the boundary value problem is currently obtained for initial concentrations of the order of 0.01 mol/m3. The paper proposes a new numerical-analytical method for solving boundary value problems for the system of NPP equations for real initial concentrations, using which the phenomenon of space charge breakdown (SCB) is studied.

Keywords:

system of Nernst-Planck-Poisson equations, electromembrane systems, numerical methods, desalination channel

Funding information

This reported study was funded by RFBR and DFG according to the research project no 20-58-12018 NNIO_a.

Author info

  • Anna V. Kovalenko

    д-р техн. наук, доцент, заведующая кафедры анализа данных и искусственного интеллекта Кубанского государственного университета

  • Natalia O. Chubyr

    канд. физ.-мат. наук, доцент кафедры прикладной математики Кубанского государственного университета

  • Aminat M. Uzdenova

    канд. физ.-мат. наук, доцент кафедры информатики и вычислительной математики Карачаево-Черкесского государственного университета им. А.Д. Алиева

  • Makhamet A. Kh. Urtenov

    д-р физ.-мат. наук, профессор, заведующий кафедры прикладной математики Кубанского государственного университета

References

  1. Rajeshwar, K., Ibanez, J.G., Swain, G.M., Electrochemistry and the environment. Journal of Applied Electrochemistry, 1994, vol. 24, iss. 11, pp. 1077–1091.
  2. Bazinet, L., Doyen, A., Antioxidants, mechanisms, and recovery by membrane processes. Crit. Rev. Food Sci. Nutr., 2017, vol. 57, pp. 677–700. DOI: 10.1080/10408398.2014.912609
  3. Xu, H., Ji, X., Wang, L., Huang, J., Han, J., Wang, Y., Performance study on a small-scale photovoltaic electrodialysis system for desalination. Renewable Energy, 2020, vol. 154, pp. 1008–1013. DOI: 10.1016/j.renene.2020.03.066
  4. Ortiz, J.M., Expósito, E., Gallud, F., García-García, V., Montiel, V., Aldaz, A., Electrodialysis of brackish water powered by photovoltaic energy without batteries: direct connection behaviour. Desalination, 2007, vol. 208, iss. 1–3, pp. 89–100. DOI: 10.1016/j.desal.2006.05.026
  5. Рубинштейн, И., Зальцман, Б., Прец, И., Линдер, К., Экспериментальная проверка электроосмотического механизма формирования "запредельного" тока в системе с катионообменной электродиализной мембраной. Электрохимия, 2002, т. 38, № 8, с. 956. [Rubinstein, I., Saltzman, B., Prets, I., Linder, K., Experimentalnai proverka electroosmoticheskogo mechanisma formerovania zapredelnogo toka v systeme s cationoobmennoi electrodialysnoi membranoi. Electrochimia = Electrochemistry, 2002, vol. 38, iss. 8, p. 956. (in Russian)]
  6. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P., Pourcelly, G., Desalination at overlimiting currents: State-of-the-art and perspectives, Desalination, 2014, vol. 342, pp. 85–106. DOI: 10.1016/j.desal.2014.01.008
  7. Ran, J., Wu, L., He, Y., Yang, Zh., Wang, Y., Jiang, Ch., Ge, L., Bakangura, E., Xu, T., Ion exchange membranes: New developments and applications. J. Membr. Sci., 2017, vol. 522, pp. 267–291. DOI: 10.1016/j.memsci.2016.09.033
  8. Rubinstein, I., Shtilman, L., Voltage against current curves of cation exchange membranes. J. Chem. Soc. Faraday Trans., 1979, vol. 75, pp. 231–246. DOI: 10.1039/F29797500231
  9. Demekhin, E.A., Shelistov, V.S., Polyanskikh, S.V., Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability. Phys. Rev. E., 2011, vol. 84, p. 036318. DOI: 10.1103/PhysRevE.84.036318
  10. Uzdenova, A.M., Kovalenko, A.V., Urtenov, M.K., Nikonenko, V.V., 1D mathematical modelling of non-stationary ion transfer in the diffusion layer adjacent to an ion-exchange membrane in galvanostatic model. Membranes, 2018, vol. 8, iss. 3, p. 84; DOI: 10.3390/membranes8030084
  11. Mishchuk, N.A., Concentration polarization of interface and non-linear electrokinetic phenomena. Adv. Colloid Interface Sci., 2010, vol. 160, iss. 1–2, pp. 16–39. DOI: 10.1016/j.cis.2010.07.001
  12. Чубырь, Н.О., Коваленко, А.В., Уртенов, М.А.Х., Численные и асимптотические методы анализа переноса 1:1 электролита в мембранных системах. Краснодар, КубГУ, 2018. [Chubyr, N.O., Kovalenko, A.V., Urtenov, M.A.Kh., Chislennye i asimptoticheskie metody analiza perenosa 1:1 elektrolita v membrannykh sistemakh = Numerical and asymptotic methods for the analysis of electrolyte transfer 1:1 in membrane systems. Krasnodar, KubGU, 2018. (in Russian)]
  13. Gudza, V.A., Chubyr. N.O., Kirillova. E.V., Urtenov, M.Kh., Numerical and asymptotic study of non-stationary mass transport of binary salt ions in the diffusion layer near the cation exchange membrane at prelimiting currents. Appl. Math. Inf. Sci., vol. 15, iss. 4, pp. 411–422. DOI: 10.18576/amis/150402
  14. Лаврентьев, А.В., Уртенов, К.М., Хромых, А.А., Чубырь, Н.О., Численное и асимптотическое решения неодномерной системы уравнений Нернста-Планка-Пуассона. Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки, 2010, no. 5, c. 17–22. [Lavrentiev, A.V., Urtenov, K.M., Khromykh, A.A., Chubyr, N.O., Numerical and asymptotic solutions of the non-one-dimensional system of Nernst-Planck-Poisson equations. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Estestvennye nauki = News of higher educational institutions. North Caucasian region. Series: Natural Sciences, 2010, no. 5, pp. 17–22. (in Russian)]
  15. Хромых, А.А., Чубырь, Н.О. Алгоритм численного решения одной краевой задачи с условием КРЗ. Свидетельство о регистрации программы для ЭВМ RU 2010615502. Заявка № 2010613989 от 05.07.2010. [Khromykh, A.A., Chubyr, N.O. Algoritm chislennogo resheniya odnoy kraevoy zadachi s usloviem KRZ = Algorithm for the numerical solution of one boundary value problem with the CPD condition. Certificate of registration of the computer program RU 2010615502. Application No. 2010613989 dated 05.07.2010. (in Russian)]
  16. Uzdenova, A., Urtenov, M., Mathematical modeling of the phenomenon of space-charge breakdown in the galvanostatic mode in the section of the electromembrane desalination channel. Membranes (Basel), 2021, vol. 11, p. 873. DOI: 10.3390/membranes11110873
  17. Urtenov, M., Chubyr, N., Gudza, V., Reasons for the formation and properties of soliton-like charge waves in membrane systems when using overlimiting current modes. Membranes (Basel), 2020, vol. 10, iss. 8, p. 189. DOI: 10.3390/membranes10080189
  18. Чубырь, Н.О., Коваленко, А.В., Уртенов, М.Х., Гудза, И.В., Математическая модель стационарного переноса ионов соли в сечении канала при равновесии. Моделирование, оптимизация и информационные технологии, 2022, vol. 10, no. 3. [Chubyr, N.O., Kovalenko, A.V., Urtenov, M.Kh., Gudza, I.V., Mathematical model of stationary transfer of salt ions in the channel section at equilibrium. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, optimization and information technology, 2022, vol. 10, no. 3. (in Russian)] DOI: 10.26102/2310-6018/2022.38.3.009
  19. Gudza, V., Urtenov, M.A.Kh., Chubyr, N.O., Shkorkina, I., Mathematical modelling of space charge breakdown in membrane systems taking into account the non-catalytic dissociation/ recombination reaction of water molecules. В: E3S Web of Conferences. Series "Topical Problems of Agriculture, Civil and Environmental Engineering, TPACEE 2020", 2020, p. 02009.

Downloads

Download data is not yet available.

Issue

Pages

6-16

Section

Mathematics

Dates

Submitted

October 4, 2022

Accepted

October 12, 2022

Published

October 12, 2022

How to Cite

[1]
Kovalenko, A.V., Chubyr, N.O., Uzdenova, A.M., Urtenov, M.A.K., Numerical-analytical method for solving boundary value problems for the system of Nernst-Planck and Poisson equations. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, т. 19, № 3, pp. 6–16. DOI: 10.31429/vestnik-19-3-6-16

Similar Articles

1-10 of 446

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>