Cryptosystems mathematical models design based on NP-complete problems containing Diophantine difficulties

Authors

  • Osipyan V.O. Kuban State University, Krasnodar, Russian Federation ORCID iD 0000-0001-6558-7998
  • Al Gharib E.T.J. Kuban State University, Krasnodar, Russian Federation

UDC

519.72+004

DOI:

https://doi.org/10.31429/vestnik-19-4-20-26

Abstract

A new area of NP-complete problems from Diophantine analysis is involved in the manuscript: multistep systems of Tarry-Escott type Diophantine equations. Mathematical models of cryptosystems based on known NP-complete problems using a universal Diophantine language are presented. The described models demonstrate the potential of using Diophantine equations for the development of SPI with a high degree of reliability. A mathematical model of an alphabetic information security system has been developed that generalizes the principle of constructing cryptosystems with a public key - the so-called dissymmetric trigram cryptosystem. In it, forward and reverse transformations are implemented according to a given algorithm based on a multiparametric solution of a multi-stage system of Diophantine equations.

Keywords:

NP-complete problem, multi-degree system of Diophantine equations, key generation, symmetric (dissymmetric) cryptosystem, parametric solution, Diophantine difficulties

Author info

  • Valeriy O. Osipyan

    д-р физ.-мат. наук, доцент, профессор кафедры анализа данных и искусственного интеллекта Кубанского государственного университета

  • Eman Talib J. Al Gharib

    аспирантка кафедры анализа данных и искусственного интеллекта Кубанского государственного университета

References

  1. Shannon, C., Communication theory of secrecy systems. Bell System Techn. J., 1949, vol. 28, iss. 4., pp. 656–715.
  2. Dorwart, H.L., Brown, O.E., The Tarry-Escott problem. Amer. Math. Monthly, 1937, vol. 44, iss. 10, pp. 613–626.
  3. Матиясевич, Ю.В., Десятая проблема Гильберта. Наука, Москва, 1993. [Matiyasevich, Yu.V., Desyataya problema Gil'berta = Hilbert's tenth problem. Nauka, Moscow, 1993.]
  4. Carmichael, R.D., The theory of numbers and diophantine analysis. New York, 1959.
  5. Саломаа, А., Криптография с открытым ключом. Мир, Москва, 1995. [Salomaa, A., Kriptografiya s otkrytym klyuchom = Public key cryptography. Mir, Moscow, 1995. (in Russian)]
  6. Осипян, В.О., Разработка математической модели дисимметричной биграммной криптосистемы на основе параметрического решения многостепенной системы диофантовых уравнений. Сетевой научный журнал "Инженерный вестник Дона", 2020, № 6. [Osipyan, V.O., Development of a mathematical model of a dissymmetric bigram cryptosystem based on the parametric solution of a multi-degree system of Diophantine equations. Setevoy nauchnyy zhurnal "Inzhenernyy vestnik Dona" = Web Scientific Journal "Engineering Bulletin of the Don", 2020, no. 6. (in Russian)] URL: http://ivdon.ru/ru/magazine/archive/N6y2020/6534
  7. Осипян, В.О., Разработка математических моделей систем защиты информации, содержащих диофантовы трудности. Кубанский гос. ун-т, Краснодар, 2021. [Osipyan, V.O., Razrabotka matematicheskikh modeley sistem zashchity informatsii, soderzhashchikh diofantovy trudnosti = Development of mathematical models of information security systems containing Diophantine difficulties. Kuban State University, Krasnodar, 2021. (in Russian)]
  8. Koblitz, N.A., Course in number theory and cryptography. Springer-Verlag, New York, 1987.
  9. Осипян, В.О., Литвинов, К.И., Жук, А.С., Разработка математических моделей систем защиты информации на основе многостепенных систем диофантовых уравнений. Экологический вестник научных центров Черноморского экономического сотрудничества, 2019, т. 16, № 3, с. 6–15. [Osipyan, V.O., Litvinov, K.I., Zhuk, A.S., Development of mathematical models of information security systems based on multi-degree systems of Diophantine equations. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 3, pp. 6–15. (in Russian)] DOI 10.31429/vestnik-16-3-6-15

Downloads

Download data is not yet available.

Issue

Pages

20-26

Section

Mathematics

Dates

Submitted

November 15, 2022

Accepted

November 17, 2022

Published

November 30, 2022

How to Cite

[1]
Osipyan, V.O., Al Gharib, E.T.J., Cryptosystems mathematical models design based on NP-complete problems containing Diophantine difficulties. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, т. 19, № 4, pp. 20–26. DOI: 10.31429/vestnik-19-4-20-26

Similar Articles

1-10 of 486

You may also start an advanced similarity search for this article.