On the existence of a positive solution to a boundary value problem for a nonlinear functional-differential equation of fractional order

Authors

UDC

517.927.4

EDN

CYWMKY

DOI:

10.31429/vestnik-20-3-6-12

Abstract

The following boundary value problem for a non-linear functional-differential equation of fractional order is considered:
\begin{align*}
&D_{0+}^\alpha x(t)+f \left (t,\left(Tx \right)(t) \right)=0,\quad 0<t<1, \quad \alpha\in (2, 3],\\
&x(0)=x'(0)=0,\\
&x(1)=0.
\end{align*}
Using special topological tools of nonlinear analysis, we prove the existence of a positive solution to this problem. An example is given that illustrates the fulfillment of sufficient conditions for the unique solvability of the problem. The results obtained complement the author's research on the existence and uniqueness of positive solutions to boundary value problems for non-linear functional-differential equations.

Keywords:

functional-differential equation of fractional order, положительное решение, краевая задача, функция Грина

Funding information

The study did not have sponsorship.

Author info

  • Gusen E. Abduragimov

    канд. физ.-мат. наук, доцент кафедры прикладной математики Дагестанского государственного университета

References

  1. Delbosco, D., Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl., 1996, vol. 204, no. 2, pp. 609–625. DOI: 10.1006/jmaa.1996.0456
  2. Zhang, S., The existence of a positive solution for nonlinear fractional differential equation. J. Math. Anal. Appl., 2000, vol. 252, no. 2, pp. 804–812. DOI: 10.1006/jmaa.2000.7123
  3. Zhang, S., Existence of positive solutions for some class of nonlinear fractional equation. J. Math. Anal. Appl., 2003, vol 278, no, 1, pp. 136–148. DOI: 10.1016/S0022-247X(02)00583-8
  4. Jafari, H., Daftardar-Gejji, V., Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput., 2006, vol 180, no. 2, pp. 700–706. DOI: 10.1016/j.amc.2006.01.007
  5. Karaca, I.Y., Oz, D., Existence of solutions for a fractional order boundary value problem. Ukr. Math. J., 2021, vol 72, pp. 1907–1920.
  6. Bachar, I., Maagli, H., Eltaeb, H., Existence and uniqueness of solutions for a class of fractional nonlinear boundary value problems under mild assumptions. Adv. Differ. Equ., 2021, vol. 22, pp. 1–11. DOI: 10.1186/s13662-020-03176-w
  7. Caballero, J., Harjani, J., Sadarangani, K., Existence and uniqueness of positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. RACSAM, 2021, vol. 115, no. 48, pp. 1–9. DOI: 10.1007/s13398-020-00994-1
  8. Sang, Y., He, L., Existence of an approximate solution for a class of fractional multi-point boundary value problems with the derivative term. Bound. Value Probl., 2021, vol. 20, pp. 1–28. DOI: 10.1186/s13661-021-01497-7
  9. Sang, Y., He, L., Wang, Y., Ren, Y., Shi, N., Existence of positive solutions for a class of fractional differential equations with the derivative term via a new fixed point theorem. Adv. Differ. Equ., 2021, vol. 156, pp. 1–17. DOI: 10.1186/s13662-021-03318-8
  10. Chabane F., Benbachir M., Hachama M., Samei M.E., Existence of positive solutions for p-Laplacian boundary value problems of fractional differential equations. Bound. Value Probl., 2022, vol 65, pp. 1–38. DOI: 10.1186/s13661-022-01645-7
  11. Dilna, N., Gromyak, M., Leshchuk, S., Unique solvability of the boundary value problems for nonlinear fractional functional differential equations. J. Math. Sci., 2022, vol. 265, pp. 577–588. DOI: 10.1007/s10958-022-06072-8
  12. Liu, Y., Yan, C., Jiang, W., Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann–Liouville fractional derivatives. Bound. Value Probl., 2023, vol. 9, pp. 1–15. DOI: 10.1186/s13661-023-01696-4
  13. Абдурагимов, Г.Э., О существовании и единственности положительного решения краевой задачи для одного нелинейного функционально-дифференциального уравнения дробного порядка. Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 2021, № 194, с. 3–7. [Abduragimov, G.E., On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear functional-differential equation of fractional order. Itogi nauki i tekhn. ser. Sovrem. mat. i yeye pril. Temat. obz. = Results of science and technology. Ser. Modern mat. and her app. Subject. review, 2021, vol. 194, pp. 3–7. (in Russian)] DOI: 10.1016/j.jmaa.2005.02.052
  14. Абдурагимов, Г.Э., О существовании и единственности положительного решения краевой задачи для одного нелинейного функционально-дифференциального уравнения дробного порядка. Вестник российских университетов. Математика, 2022, т. 27, № 138, с. 129–135. [Abduragimov, G.E., On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear functional-differential equation of fractional order. Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 2022, vol. 27, no. 138, pp. 129–135. (in Russian)] DOI: 10.20310/2686-9667-2022-27-138-129-135
  15. Xu, X., Jiang, D., Yuan, C., Multiple positive solutions for boundary value problem of nonlinear fractional differential equation. Nonlinear Anal. Theory Methods Appl., 2009, vol. 71, no. 10, pp. 4676–4688. DOI: 10.1016/j.na.2009.03.030

Downloads

Download data is not yet available.

Issue

Pages

6-12

Section

Mathematics

Dates

Submitted

June 23, 2023

Accepted

July 10, 2023

Published

September 29, 2023

How to Cite

[1]
Abduragimov, G.E., On the existence of a positive solution to a boundary value problem for a nonlinear functional-differential equation of fractional order. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, т. 20, № 3, pp. 6–12. DOI: 10.31429/vestnik-20-3-6-12

Similar Articles

1-10 of 425

You may also start an advanced similarity search for this article.