Positive solutions to a boundary value problem for one nonlinear ordinary differential equation of even order

Authors

UDC

517.927.4

EDN

AKVEYA

DOI:

10.31429/vestnik-22-1-6-13

Abstract

The boundary value problem is considered
\begin{align*}
&x^{(2n)}(t)+f(t,x(t))=0,\qquad 0<t<1,\\
&x(0)=x'(0)=\dots=x^{(2n-2)}(0)=0, \\
&x(1)=0,
\end{align*}
where $n\in N$, the function $f(t,u)$ is non-negative and continuous on $[0, 1]\times [0,\infty)$, and $f(\,\cdot\,, 0)\equiv0$.

Using Krasnoselsky's theorem on fixed points in a cone, sufficient conditions for the existence of at least one positive solution to the problem under consideration are obtained. Examples are given to illustrate the results obtained.

Keywords:

differential equation, positive solution, boundary value problem, cone, Green's function

Funding information

The study did not have sponsorship.

Author info

  • Gusen E. Abduragimov

    канд. физ.-мат. наук, доцент кафедры прикладной математики Дагестанского государственного университета

References

  1. Chyan, C.J., Henderson, J., Multiple solutions for 2mth-order Sturm-Liouville boundary value problems. Comput. Math. Appl., 2000, vol. 40, pp. 231–237. DOI: 10.1016/S0898-1221(00)00156-5
  2. Graef, J.R., Yang, B., On a nonlinear boundary-value problem for fourth-order equations. Appl. Anal., 1999, vol. 72, pp. 439–448. DOI: 10.1080/00036819908840751
  3. Graef, J.R., Yang, B., Existence and non-existence of positive solutions of fourth-order nonlinear boundary-value problems. Appl. Anal., 2000, vol. 74, pp. 201–204. DOI: 10.1080/00036810008840810
  4. Chyan, C.J., Henderson, J., Positive solutions of 2mth-order boundary value problems. Appl. Math. Lett., 2002, vol. 15, pp. 767–774. DOI: 10.1016/S0893-9659(02)00040-X
  5. Palamides, P.K., Positive solutions for higher-order Lidstone boundary value problems. A new approach Via Sperner’s Lemma. Comput.Math.Appl., 2001, vol. 42, pp. 75–89. DOI: 10.1016/s0898-1221(01)00132-8
  6. Абдурагимов, Г.Э., Абдурагимова, П.Э., Курамагомедова, М.М., О существовании и единственности положительного решения краевой задачи для нелинейного обыкновенного дифференциального уравнения четного порядка. Вестник российских университетов. Математика, 2021, т. 26, № 136, с. 341–347. [Abduragimov, G.E., Abduragimova, P.E., Kuramagomedova, M.M., On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of even order. Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 2021, vol. 26, no 136, pp. 341–347. (in Russian)] DOI: 10.20310/2686-9667-2021-26-136-341-347
  7. Абдурагимов, Г.Э., О существовании и единственности положительного решения краевой задачи для одного нелинейного обыкновенного дифференциального уравнения 4n-го порядка. Известия высших учебных заведений. Математика, 2023, т. 9, с. 20–26. [Abduragimov, G.E., On the existence and uniqueness of a positive solution to a boundary value problem for one nonlinear ordinary differential equation of 4nth order. Izvestiya vysshikh uchebnykh zavedeniy. Matematika = Russian Mathematics, 2023. vol. 67. no 9. pp. 16–22. (in Russian)] DOI: 10.3103/s1066369x23090025
  8. Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones. Academic Press, New York, 1988.

Downloads

Download data is not yet available.

Issue

Pages

6-13

Section

Mathematics

Dates

Submitted

February 18, 2025

Accepted

March 10, 2025

Published

March 27, 2025

How to Cite

[1]
Abduragimov, G.E., Positive solutions to a boundary value problem for one nonlinear ordinary differential equation of even order. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2025, т. 22, № 1, pp. 6–13. DOI: 10.31429/vestnik-22-1-6-13

Similar Articles

1-10 of 413

You may also start an advanced similarity search for this article.