Construction of a consistent differential formulation of the adjointproblem for the passive impurity transfer model
UDC
51.37EDN
QIKOINDOI:
10.31429/vestnik-22-2-80-88Abstract
When implementing numerical algorithms for identifying the power of pollution sources in the passive impurity transfer model based on measurement data, the question naturally arises of constructing conjugate statements consistent with the main task. Such a matching can be considered from the perspective of a differential formulation, as well as from the point of view of discretization of the problem in its numerical implementation. This paper discusses various aspects of such alignment for the model of transport in the Sea of Azov and a similar model for the Black Sea. Ocean dynamics models are nonlinear in nature. When solving the problem of assimilation of measurement data in hydrodynamic models, linearization is most often performed over a certain time interval (assimilation interval). In this paper, a model of passive impurity transfer is considered, i.e., it does not affect the dynamic processes in the liquid itself. Such models are often used in solving environmental problems. The impurity transfer model is linear. The quadratic prediction quality functional is convex, i.e. it has one extremum. Using a linear model as links to minimize such a functional does not change its convexity, which leads to reliable operation of the procedure for searching for the extremum of the functional. Such a search is performed using an appropriate iterative process. The equations of the transfer model used may have different forms depending on the problem being solved and the region of its application. For example, a $\sigma$-coordinate model is used to solve a problem in the waters of the Sea of Azov. The results of the work can be useful in solving various environmental problems in the process of studying the effects of anthropogenic pollution sources in the waters of the Azov and Black Seas.
Keywords:
model of transport, passive admixture, identification, adjoint task, minimization, Azov seaFunding information
The work was performed for the state assignment on the topic FNNN-2024-0016 ``Study of the spatial and temporal variability of oceanological processes in the coastal, coastal and shelf zones of the Black Sea under the influence of natural and anthropogenic factors based on contact measurements and mathematical modeling'' (code ``Coastal research'').
References
- Шутяев, В.П., Методы усвоения данных наблюдений в задачах физики атмосферы и океана. Известия РАН. Физика атмосферы и океана, 2019, т. 55, № 1, с. 17–34. [Shutyaev, V.P., Methods for observation data assimilation in problems of physics of atmosphere and ocean. Izv. Atmos. Ocean. Phys., 2019, vol. 55, no. 1, pp. 17–31. (in Russian)] DOI: 10.1134/S0001433819010080
- Еремеев, В.Н., Кочергин, В.П., Кочергин, С.В., Скляр, С.Н., Математическое моделирование гидродинамики глубоководных бассейнов. Севастополь, ЭКОСИ-Гидрофизика, 2002. [Eremeev, V.N., Kochergin, V.P., Kochergin, S.V., Sklyar, S.N., Matematicheskoe modelirovanie gidrodinamiki glubokovodnykh basseynov = Mathematical modeling of hydrodynamics of deep-water basins. Sevastopol, ECOSI-Gidrophysics, 2002. (in Russian)]
- Фомин, В.В., Численная модель циркуляции вод Азовского моря. Научные труды УкрНИГМИ, 2002, вып. 249, с. 246–255. [Fomin, V.V., Numerical model of water circulation in the Sea of Azov. Nauchnye trudy UkrNIGMI = Scientific works of UkrNIGMI, 2002, iss. 249, pp. 246–255. (in Russian)]
- Иванов, В.А., Фомин, В.В., Математическое моделирование динамических процессов в зоне море – суша. Севастополь, ЭКОСИ-гидрофизика, 2008. [Ivanov, V.A., Fomin, V.V., Matematicheskoe modelirovanie dinamicheskih processov v zone more – susha = Mathematical modeling of dynamic processes in the sea-land zone. Sevastopol', EKOSI-gidrofizika, 2008. (in Russian)]
- Marchuk, G.I., Penenko, V.V., Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment. In Marchuk G.I. (ed.) Modelling and Optimization of Complex Systems, Berlin: Springer, 1979, p. 240–252. DOI: 10.1007/BFb0004167
- Кочергин, В.С., Кочергин, С.В., Идентификация мощности источника загрязнения в Казантипском заливе на основе применения вариационного алгоритма. Морской гидрофизический журнал, 2015, № 2, с. 79–88. [Kochergin, V.S., Kochergin, S.V., Identification of the pollution source power in the Kazantip Bay based on the application of the variational algorithm. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2015, no. 2, pp. 79–88. (in Russian)] EDN: VDVDER DOI: 10.22449/0233-7584-2015-2-79-88
- Кочергин, В.С., Кочергин, С.В., Использование вариационных принципов и решения сопряженной задачи при идентификации входных параметров модели переноса пассивной примеси. Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа, 2010, вып. 22, с. 240–244. [Kochergin, V.S., Kochergin, S.V., Use of variational principles and solution of the conjugate problem in identification of input parameters of the passive admixture transport model. Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa = Environmental safety of coastal and shelf zones and integrated use of shelf resources, 2010, issue 22, pp. 240–244. (in Russian)] EDN: WTBIDL
- Кочергин, В.С., Кочергин, С.В., Использование решения сопряженных задач при идентификации входных параметров модели переноса и планировании эксперимента. Экологический вестник научных центров Черноморского экономического сотрудничества, 2017, № 2, c. 42–47. [Kochergin, V.S., Kochergin, S.V., Using the solution of conjugate problems in identifying input parameters of the transfer model and planning an experiment. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2017, no. 2, pp. 42–47. (in Russian)] EDN: ZSBWKK DOI: 10.31429/vestnik-22-1-62-67
- Демышев, С.Г., Дымова О.А., Кочергин В.С., Кочергин С.В., Определение местоположения начального поля концентрации возможного источника загрязнения в акватории Черного моря у Гераклейского полуострова на основе метода сопряженных уравнений. Морской гидрофизический журнал, 2020, т. 36, № 2, с. 226–237. [Demyshev, S.G., Dymova O.A., Kochergin V.S., Kochergin S.V., Determining the location of the initial concentration field of a possible pollution source in the Black Sea near the Heraclean Peninsula based on the adjoint equation method. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2020, vol. 36, no. 2, pp. 226–237. (in Russian)] EDN: QXFBMA DOI: 10.22449/0233-7584-2020-2-226-237
- Demyshev, S.G., Kochergin, V.S., Kochergin, S.V., Using the Variational Approach and Adjoint Equations Method Under the Identification of the Input Parameter of the Passive Admixture Transport Model. In Conf. Proc. "Physical and Mathematical Modeling of Earth and Environment Processes. 3rd Inter-national Scientific School for Young Scientists, Ishlinskii Institute for Problems in Mechanics of Russian Academy of Science", Springer International Publishing AG, part of Springer Nature, 2018, ch. 7, pp. 51–61. DOI: 10.1007/978-3-319-77788-7
- Роуч, П., Вычислительная гидродинамика. Москва, Мир, 1980. [Roach, P., Vychislitel'naya gidrodinamika = Computational Fluid Dynamics. Moscow, Mir, 1980. (in Russian)]
- Самарский, А.А., Теория разностных схем. Москва, Наука, 1983. [Samarskii, A.A., Teoriya raznostnykh skhem = Theory of Difference Schemes. Moscow, Nauka, 1983. (in Russian)]
- Булеев, Н.И., Тимухин, Г.И., О составлении разностных уравнений гидродинамики вязкой неоднородной среды. Численные методы механики сплошной среды, 1972, т. 3, № 4, с. 19–26. [Buleev, N.I., Timukhin, G.I., On the formulation of difference equations for the hydrodynamics of a viscous inhomogeneous medium. Chislennye metody mekhaniki sploshnoy sredy = Numerical Methods of Continuum Mechanics, 1972, v. 3, no. 4, pp. 19–26. (in Russian)]
- Булеев, Н.И., Пространственная модель турбулентного обмена. Москва, Наука, 1983. [Buleev, N.I., Prostranstvennaya model' turbulentnogo obmena = Spatial Model of Turbulent Exchange. Moscow, Nauka, 1983. (in Russian)]
- Ильин, А.М., Разностная схема для дифференциального уравнения с малым параметром при старшей производной. Математические заметки, 1969, т. 6, вып. 2, с. 237–248. [Ilyin, A.M., Difference scheme for a differential equation with a small parameter at the highest derivative. Matematicheskie zametki = Mathematical Notes, 1969, vol. 6, iss. 2, pp. 237–248. (in Russian)]
- Дулан, Э., Миллер, Дж., Шилдерс, У., Равномерные численные методы решения задач с пограничным слоем. Москва, Мир, 1983. [Doolan, E., Miller, J., Shielders, W., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem = Uniform Numerical Methods for Solving Boundary Layer Problems. Moscow, Mir, 1983. (in Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Кочергин В.С., Кочергин С.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.