Variational procedures for determining the parameters of the transfer model based on measurement data
UDC
51.37EDN
FWFVSEDOI:
10.31429/vestnik-22-4-31-36Abstract
Due to the intensive development of technical capabilities for obtaining satellite information on the state of the ocean and seas, the creation of methods and algorithms for processing such information, the development of methods for mathematical modeling of water dynamics and concentrations of impurities of various nature, it is necessary to create and use reliable procedures for assimilating such information in numerical models. There are different approaches to solving this problem. These are dynamic stochastic methods for correcting the obtained solution and variational algorithms for assimilating measurement data by determining model parameters. Such parameters make it possible to determine model estimates of concentration fields consistent not only with the measurement data, but also with the model itself. This alignment occurs by minimizing the corresponding forecast quality functionality and integrating the model itself. When implementing the dynamic-stochastic approach, there are difficulties in correctly determining the error covariance matrix, and in the case of using the second one, with nonlinear constraints imposed by the model, it is necessary to perform linearization on the assimilation interval used. When solving the problem of identifying the input parameters of the passive impurity transfer model, there is no problem of finding a global minimum. This is due to the convexity of the quality functional itself and the linearity of constraints that do not change the convexity of the overall functional. Such identification procedures are based on solving related problems and implementing iterative algorithms for finding optimal parameters based on measurement data. The uniqueness of the solution of the adjoint problem, the linearity of the constraints, and hence the convexity of the overall functional, allows us to determine the necessary parameters. Such parameters in the problem of passive impurity transfer can be the initial data, the fluxes of matter on the bottom and surface, the power of point sources, the sedimentation rate of the impurity, the coefficients of turbulent diffusion and velocity fields. The paper describes a technique for variational identification of input parameters for a passive impurity transfer model when assimilating measurement data for a finite time. Similar procedures are being built for the case of time-distributed measurement data.
Keywords:
model of transport, passive admixture, identification, adjoint task, minimizationFunding information
The work was carried out within the framework of the state assignment on topic No. FNNN-2024-0016 "Study of the spatio-temporal variability of oceanographic processes in the coastal, coastal and shelf zones of the Black Sea under the influence of natural and anthropogenic factors based on contact measurements and mathematical modeling" (code "Coastal research").
References
- Кременчуцкий, Д.А., Кубряков, А.А., Завьялов, П.О., Коновалов, Б.В., Станичный, С.В., Алескерова, А.А., Определение концентрации взвешенного вещества в Черном море по данным спутника MODIS. Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа, 2014, № 29, с. 1–9. [Kremenchutsky, D.A., Kubryakov, A.A., Zavyalov, P.O., Konovalov, B.V., Stanichny, S.V., Aleskerova, A.A., Determination of suspended matter concentration in the Black Sea based on MODIS satellite data. Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa = Environmental safety of coastal and shelf zones and integrated use of shelf resources, 2014, no. 29, pp. 1–9. (in Russian]
- Тимченко, И.Е., Динамико-стохастические модели состояния океана. Киев, Наук. думка, 1981. [Timchenko, I.E., Dinamiko-stokhasticheskie modeli sostoyaniya okeana = Dynamic-stochastic models of the ocean state. Kyiv, Naukova Dumka, 1981. (in Russian)]
- Marchuk, G.I., Penenko, V.V., Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment. In Marchuk, G.I. (ed.), Proc. оf the IFIP-TC7 Working conf. "Modelling and Optimization of Complex Systems". NewYork, Springer, 1978, pp. 240–252.
- Кочергин, В.С., Кочергин, С.В., Использование вариационных принципов и решения сопряженной задачи при идентификации входных параметров модели переноса пассивной примеси. Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа, 2010, № 22, с. 240–244. [Kochergin, V.S., Kochergin, S.V., Use of variational principles and solution of the adjoint problem in identification of input parameters of the passive pollutant transport model. Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa = Environmental safety of coastal and shelf zones and integrated use of shelf resources, 2010, no. 22, pp. 240–244. (in Russian)]
- Пененко, В.В., Методы численного моделирования атмосферных процессов. Ленинград, Гидрометеоиздат, 1981. [Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov = Methods of Numerical Modeling of Atmospheric Processes. Leningrad, Gidrometeoizdat, 1981. (in Russian)]
- Агошков, В.И., Пармузин, Е.И., Шутяев, В.П., Ассимиляция данных наблюдений в задаче циркуляции Черного моря и анализ чувствительности её решения. Изв. РАН. Физика атмосферы и океана, 2013, т. 49, № 6, с. 643–654. [Agoshkov, V.I., Parmuzin, E.I., Shutyaev, V.P., Assimilation of observational data in the Black Sea circulation problem and sensitivity analysis of its solution. Izvestiya RAN. Fizika atmosfery i okeana = Bull. of the Russian Academy of Sciences. Atmospheric and Oceanic Physics, 2013, vol. 49, no. 6, pp. 643–654. (in Russian)]
- Шутяев, В.П., Ле Диме, Ф., Агошков, В.И., Пармузин, Е.И., Чувствительность функционалов задачь вариационного усвоения данных наблюдений. Изв. РАН. Физика атмосферы и океана, 2015, т. 51, № 3, с. 392–400. [Shutyaev, V.P., Le Dime, F., Agoshkov, V.I., Parmuzin, E.I., Sensitivity of functionals in the problem of variational assimilation of observational data. Izvestiya RAN. Fizika atmosfery i okeana = Bull. of the Russian Academy of Sciences. Atmospheric and Oceanic Physics, 2015, vol. 51, no. 3, pp. 392–400. (in Russian)]
- Shutyaev, V. P., Le Dimet, F.–X., Parmuzin, E., Sensitivity analysis with respect to observations in variational data assimilation for parameter estimation. Nonlinear processes in Geophysics, 2018, vol. 25, iss. 2, pp. 429–439.
- Кочергин, В.С., Кочергин, С.В., Идентификация мощности источника загрязнения в Казантипском заливе на основе применения вариационного алгоритма. Морской гидрофизический журнал, 2015, № 2, с. 79–88. [Kochergin, V.S., Kochergin, S.V., Identification of the pollution source power in the Kazantip Bay based on the application of a variational algorithm. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2015, no. 2, pp. 79–88. (in Russian)] EDN: VDVDER DOI: 10.22449/0233-7584-2015-2-79-88
- Марчук, Г.И., Математическое моделирование в проблеме окружающей среды. Москва, Наука, 1982. [Marchuk, G.I., Matematicheskoe modelirovanie v probleme okruzhayushchey sredy = Mathematical Modeling in Environmental Problems. Moscow, Nauka, 1982. (in Russian)]
- Кочергин, В.С., Кочергин, С.В., Станичный, С.В., Вариационная ассимиляция спутниковых данных поверхностной концентрации взвешенного вещества в Азовском море. Современные проблемы дистанционного зондирования Земли из космоса, 2020, т. 17, № 2, с. 40–48. [Kochergin, V.S., Kochergin, S.V., Stanichny, S.V., Variational assimilation of satellite data on the surface concentration of suspended matter in the Sea of Azov. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa = Modern Problems of Remote Sensing of the Earth from Space, 2020, vol. 17, no. 2, pp. 40–48. (in Russian)]
- Кочергин, С.В., Фомин В.В., Вариационная идентификация входных параметров модели распространения загрязняющих веществ от подводного источника. Морской гидрофизический журнал, 2019, т. 35, № 6, с. 621–632. [Kochergin, S.V., Fomin V.V., Variational identification of input parameters of the model of pollutant spread from an underwater source. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2019, v. 35, no. 6, pp. 621–632. (in Russian)] EDN: PIQZAL DOI: 10.22449/0233-7584-2019-6-621-63
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Кочергин В.С., Кочергин С.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.