Modeling of pollutant emissions during ceramic production with combustible additive of rice husk

Authors

  • Usatikov S.V. Kuban State Technological University, Krasnodar, Russian Federation
  • Shazzo A.Yu. Kuban State Technological University, Krasnodar, Russian Federation

UDC

519.711.3:574

Abstract

Proposed the mathematical model for determining the volume of pollutant emissions to air and justification of technology solutions for the qualitative and quantitative characteristics of pollutant emissions into the air, using rice husk as a burnable organic additives in ceramic production.

Keywords:

mathematical model, heat-mass exchange, hermochemistry of rice husk, tunnel kiln, pollutant emissions

Funding information

Данная работа выполнена при финансовой поддержке Российского Фонда фундаментальных исследований и администрации Краснодарского края, грант №11-08-96519-р_юг_ц.

Author info

  • Sergey V. Usatikov

    д-р физ.-мат. наук, профессор кафедры общей математики Кубанского государственного технологического университета

  • Aslan Yu. Shazzo

    д-р техн. наук, заведующий кафедрой пищевой инженерии и высоких технологий Кубанского государственного технологического университета

References

  1. Нохратян К.А. Сушка и обжиг в промышленности строительной керамики. М.: Гос.изд.лит. по строит., архит. и стройматер., 1962. 603 с.
  2. Сергиенко В.И., Земнухова Л.А., Егоров А.Г., Шкорина Е.Д., Василюк Н.С. Возобновляемые источники химического сырья: комплексная переработка отходов производства риса и гречихи // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2004. Т. XLVIII. №3. C. 116-124.
  3. Al-Marahleh G. Production of Light Weight Ceramics Teils from Local Materials // American Journal of Applied Sciences. 2005. Vol. 2. No 3. P. 778-783.
  4. V. de Paulo Nicolau, Dadam A.P. Numerical and Experimental Thermal Analysis of a Tunnel Kiln used in Ceramic Production // J. of the Braz. Soc. of Mech. Sci. & Eng. 2009. Vol .31. No 4. P. 297-304.
  5. Williams P.T., Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks // Energy. 2000. Vol. 25. P. 493-513.
  6. Markovska I.G., Lyubchev L.A. A study on the thermal destruction of rice husk in air and nitrogen atmosphere // Journal of Thermal Analysis and Calorimetry. 2007. Vol. 89. No 3. P. 809-814.
  7. Chiang W.-F., Fang H.-Y., Wu C.-H., Chang C.-Y.; Chang Y.-M., Shie J.-L. Pyrolysis Kinetics of Rice Husk in Different Oxygen Concentrations // Journal of Environmental Engineering. 2008. Vol. 134. No 4. P. 316-325.
  8. Xiujuan G., Shurong W., Qi W., Zuogang G., Zhongyang L. Properties of Bio-oil from Fast Pyrolysis of Rice Husk // Chinese Journal of Chemical Engineering. 2011. Vol. 19. No 1. P. 116-121.
  9. Baker E.G., Brown M.D., Elliott D.C., Mudge L.K. Characterization and Treatment of Tars from Biomass Gasifiers // Denver, CO: AIChE 1988 Summer National Meeting, P. 1-11.
  10. Evans R.J., Milne T.A. Chemistry of Tar Formation and Maturation in the Thermochemical Conversion of Biomass // in Developments in Thermochemical Biomass Conversion. Vol. 2. Edited by A.V. Bridgwater and D.G.B. Boocock. London: Blackie Academic & Professional. 1997. P. 803-816.

Downloads

Download data is not yet available.

Issue

Pages

83-91

Section

Article

Dates

Submitted

July 20, 2011

Accepted

August 18, 2011

Published

September 30, 2011

How to Cite

[1]
Usatikov, S.V., Shazzo, A. Y., Modeling of pollutant emissions during ceramic production with combustible additive of rice husk. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2011, № 3, pp. 83–91.

Similar Articles

1-10 of 185

You may also start an advanced similarity search for this article.