On the inverse problem solution for two-dimentional domain

Authors

  • Gorbashova E.A. Southern Federal University, Rostov-on-Don, Russian Federation
  • Ouglich P.S. Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences, Vladikavkaz, Republic of North Ossetia - Alania, Russian Federation

UDC

534.1

Abstract

Both direct and inverse problems for antiplane enforced vibrations of the elastic rectangular bar are considered. Shear modulus and density of the considered body depend on both coordinates. For the direct problem solving, the finite differenses method is used. It reduses the direct problem to a linear equations system, which can be solved using the modified tridiagonal matrix algorithm. The inverse problem of material properties definition using displacement field data is also considered and redused to the iterative solution of the integral equations sequence.

Keywords:

inverse coefficient problems, finite difference method

Funding information

Работа выполнена при поддержке РФФИ (10-01-00194-а), ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009-2013 годы (г/к П596) и Южного математического института, г. Владикавказ.

Author info

  • Ekaterina A. Gorbashova

    студентка факультета математики, механики и компьютерных наук Южного федерального университета

  • Pavel S. Ouglich

    канд. физ.-мат. наук, научный сотрудник Южного математического института Владикавказского научного центра РАН

References

  1. Cox S.J., Gockenbach M.S. Recovering planar Lame moduli from a single-traction experiment // Math. Mech. Solids. 1997. Vol. 2. P. 297-306.
  2. Gockenbach M.S., Khan A.A. Identification of Lame parameters in linear elasticity: a fixed point approach // J. Indust. Manag. Optim. 2005. Vol. 1. No 4. P. 487-497.
  3. An Inverse Problem in Elastodynamics: Uniqueness of the wave speeds in the interior // J. Diff. Eqs. 2000. Vol. 162. No 2. P. 300-325.
  4. Uniqueness of the density in an inverse problem for isotropic elastodynamics // Transactions of the American Mathematical Society. 2003. Vol. 355. No 12. P. 4781-4806.
  5. Arrival times for the wave equation // Communications on Pure and Applied Mathematics (CPAM). 2011. Vol. 64. No 3. P. 313-327.
  6. Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data // Journal of Acoustical Society of America. Vol. 130. No 1. P. 585-598.
  7. Shear wave speed recovery in sonoelastography using crawling wave data // Journal of the Acoustical Society. 2010. Vol. 128. No 1. P. 88-97.
  8. %Статья Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986. 287 с.
  9. %Книга Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: БИНОМ, 2004. 636 с.
  10. Ватульян А.О. Интегральные уравнения в обратных задачах определения коэффициентов дифференциальных операторов теории упругости // ДАН. 2005. Т. 405 №3. С. 343-345.

Downloads

Download data is not yet available.

Issue

Pages

48-55

Section

Article

Dates

Submitted

April 27, 2012

Accepted

August 27, 2012

Published

December 25, 2012

How to Cite

[1]
Gorbashova, E.A., Ouglich, P.S., On the inverse problem solution for two-dimentional domain. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2012, № 4, pp. 48–55.

Similar Articles

1-10 of 464

You may also start an advanced similarity search for this article.