On the inverse problem solution for two-dimentional domain
UDC
534.1Abstract
Both direct and inverse problems for antiplane enforced vibrations of the elastic rectangular bar are considered. Shear modulus and density of the considered body depend on both coordinates. For the direct problem solving, the finite differenses method is used. It reduses the direct problem to a linear equations system, which can be solved using the modified tridiagonal matrix algorithm. The inverse problem of material properties definition using displacement field data is also considered and redused to the iterative solution of the integral equations sequence.
Keywords:
inverse coefficient problems, finite difference methodFunding information
Работа выполнена при поддержке РФФИ (10-01-00194-а), ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009-2013 годы (г/к П596) и Южного математического института, г. Владикавказ.
References
- Cox S.J., Gockenbach M.S. Recovering planar Lame moduli from a single-traction experiment // Math. Mech. Solids. 1997. Vol. 2. P. 297-306.
- Gockenbach M.S., Khan A.A. Identification of Lame parameters in linear elasticity: a fixed point approach // J. Indust. Manag. Optim. 2005. Vol. 1. No 4. P. 487-497.
- An Inverse Problem in Elastodynamics: Uniqueness of the wave speeds in the interior // J. Diff. Eqs. 2000. Vol. 162. No 2. P. 300-325.
- Uniqueness of the density in an inverse problem for isotropic elastodynamics // Transactions of the American Mathematical Society. 2003. Vol. 355. No 12. P. 4781-4806.
- Arrival times for the wave equation // Communications on Pure and Applied Mathematics (CPAM). 2011. Vol. 64. No 3. P. 313-327.
- Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data // Journal of Acoustical Society of America. Vol. 130. No 1. P. 585-598.
- Shear wave speed recovery in sonoelastography using crawling wave data // Journal of the Acoustical Society. 2010. Vol. 128. No 1. P. 88-97.
- %Статья Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986. 287 с.
- %Книга Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: БИНОМ, 2004. 636 с.
- Ватульян А.О. Интегральные уравнения в обратных задачах определения коэффициентов дифференциальных операторов теории упругости // ДАН. 2005. Т. 405 №3. С. 343-345.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2012 Горбашова Е.А., Углич П.С.
This work is licensed under a Creative Commons Attribution 4.0 International License.