Numerical solution of linear stability of micro and nanofilms of the electrolyte under an external electric field
UDC
532.517.4 : 537.2Abstract
Problems of electrokinetics have recently attracted a great deal of attention due to a rapid development of micro-, nano- and biotechnologies. Micro-nano scale phenomena with liquid/gas interface are of particular practical interest to move non-conductive liquids, creating a highly nonuniform velocity profile, mixing, etc. The article considers the effect of a thin film electrolyte under the influence of an external electric field. The presence of an inhomogeneous surface charge at the interface of gas/liquid leads to an instability and distortion of free surface. In this paper we obtain one-dimensional equilibrium and study the linear stability of this state. We find the critical values of the parameters after which a one-dimensional steady-state solution is no longer stable. Also we found long-wave instability and obtained four modes.
Keywords:
liquid film, mobile surface charge, free interface, instability, Galerkin method, electrolyte, Nernst-Planck-Poisson system, double ion layerFunding information
Работа выполнена при частичной финансовой поддержке РФФИ (14-08-31260 мол-а, 14-08-00789-a, 14-08-01171-а, 13-08-96536-р_юг_а).
References
- Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. Vol. 44. P. 401-426.
- Lee J.S.H., Li D. Electro-osmotic flow at a liquid-air interface// Microfluid. Nanofluidics. 2006. Vol. 2. P. 361-365.
- Gao Y., Wang T.N., Yang C. Transient two-liquid electro-osmotic flow with electric charges at the interface // Colloids Surfaces A. 2005. Vol. 266. P. 117-128.
- Gao Y., Wang T.N., Yang C., Ooi K.T. Two-fluid electro-osmotic flow in microchannals // J. Colloid Interface Sci. 2005. Vol. 284. P. 306-314.
- Haiwang L., Wang T.N., Nguyen T.N. Time-dependent model of mixed electro-osmotic/pressure-driven three immissible fluids in rectangular microchannel // Int. J. Heat Mass Transf. 2010. Vol. 53, P. 772-785.
- Griffits S.K., Nilson R.H. Char ged species transport, separation, and dispersion in nanoscale channels: autogenous electric field-flow fractionation // Anal. Chem. 2010. Vol. 78. P. 772-778.
- Graciaa A., Morel G., Saulner P., Lachaise J., Schecher R.S. ζ-potential in gas bubbles // J. Colloid Interface Sci. 2005. Vol. 172. P. 131-136.
-
Yang C., Dabros T., Li D., Czarnecki J., Masliyah J.H. Measurement of the
-potential of gas bubbles in aqueous solutions by microelectrophoresis method // J. Colloid Interface Sci. 2001. Vol. 243. P. 128-135. -
Takahashi M.
-potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface // J. Phys. Chem. B. 2005. Vol. 109. P. 21858-21864. - Choi W., Sharma A., Qian S., Lim G., Joo S. W. On steady two-fluid electroosmotic flow with full interfacial electrostatics // J. Colloid Interface Sci. 2011. Vol. 357. P. 521-526.
- Orszag S.A. Accurate solution of the Orr-Sommerfeld stability equation // J. Fluid Mech. 1971. Vol. 50. P. 689-703.
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2014 Горбачёва Е.В., Ганченко Г.С., Демёхин Е.А., Кирий В.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.