Numerical solution of linear stability of micro and nanofilms of the electrolyte under an external electric field

Authors

  • Gorbacheva E.V. Kuban State University, Krasnodar, Russian Federation
  • Ganchenko G.S. Kuban State University, Krasnodar, Russian Federation
  • Demekhin E.A. Kuban State University, Krasnodar, Russian Federation
  • Kiriy V.A. Kuban State University, Krasnodar, Russian Federation

UDC

532.517.4 : 537.2

Abstract

Problems of electrokinetics have recently attracted a great deal of attention due to a rapid development of micro-, nano- and biotechnologies. Micro-nano scale phenomena with liquid/gas interface are of particular practical interest to move non-conductive liquids, creating a highly nonuniform velocity profile, mixing, etc. The article considers the effect of a thin film electrolyte under the influence of an external electric field. The presence of an inhomogeneous surface charge at the interface of gas/liquid leads to an instability and distortion of free surface. In this paper we obtain one-dimensional equilibrium and study the linear stability of this state. We find the critical values of the parameters after which a one-dimensional steady-state solution is no longer stable. Also we found long-wave instability and obtained four modes.

Keywords:

liquid film, mobile surface charge, free interface, instability, Galerkin method, electrolyte, Nernst-Planck-Poisson system, double ion layer

Funding information

Работа выполнена при частичной финансовой поддержке РФФИ (14-08-31260 мол-а, 14-08-00789-a, 14-08-01171-а, 13-08-96536-р_юг_а).

Author info

  • Ekaterina V. Gorbacheva

    магистрант кафедры математического моделирования Кубанского государственного университета

  • Georgiy S. Ganchenko

    аспирант кафедры вычислительной математики и информатики Кубанского государственного университета

  • Evgeniy A. Demekhin

    д-р физ.-мат. наук, профессор кафедры вычислительной математики и информатики Кубанского государственного университета

  • Vladimir A. Kiriy

    аспирант кафедры вычислительной математики и информатики Кубанского государственного университета

References

  1. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. Vol. 44. P. 401-426.
  2. Lee J.S.H., Li D. Electro-osmotic flow at a liquid-air interface// Microfluid. Nanofluidics. 2006. Vol. 2. P. 361-365.
  3. Gao Y., Wang T.N., Yang C. Transient two-liquid electro-osmotic flow with electric charges at the interface // Colloids Surfaces A. 2005. Vol. 266. P. 117-128.
  4. Gao Y., Wang T.N., Yang C., Ooi K.T. Two-fluid electro-osmotic flow in microchannals // J. Colloid Interface Sci. 2005. Vol. 284. P. 306-314.
  5. Haiwang L., Wang T.N., Nguyen T.N. Time-dependent model of mixed electro-osmotic/pressure-driven three immissible fluids in rectangular microchannel // Int. J. Heat Mass Transf. 2010. Vol. 53, P. 772-785.
  6. Griffits S.K., Nilson R.H. Char ged species transport, separation, and dispersion in nanoscale channels: autogenous electric field-flow fractionation // Anal. Chem. 2010. Vol. 78. P. 772-778.
  7. Graciaa A., Morel G., Saulner P., Lachaise J., Schecher R.S. ζ-potential in gas bubbles // J. Colloid Interface Sci. 2005. Vol. 172. P. 131-136.
  8. Yang C., Dabros T., Li D., Czarnecki J., Masliyah J.H. Measurement of the zeta-potential of gas bubbles in aqueous solutions by microelectrophoresis method // J. Colloid Interface Sci. 2001. Vol. 243. P. 128-135.
  9. Takahashi M. zeta-potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface // J. Phys. Chem. B. 2005. Vol. 109. P. 21858-21864.
  10. Choi W., Sharma A., Qian S., Lim G., Joo S. W. On steady two-fluid electroosmotic flow with full interfacial electrostatics // J. Colloid Interface Sci. 2011. Vol. 357. P. 521-526.
  11. Orszag S.A. Accurate solution of the Orr-Sommerfeld stability equation // J. Fluid Mech. 1971. Vol. 50. P. 689-703.

Downloads

Issue

Pages

29-37

Section

Article

Dates

Submitted

October 6, 2014

Accepted

October 17, 2014

Published

December 22, 2014

How to Cite

[1]
Gorbacheva, E.V., Ganchenko, G.S., Demekhin, E.A., Kiriy, V.A., Numerical solution of linear stability of micro and nanofilms of the electrolyte under an external electric field. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, № 4, pp. 29–37.

Similar Articles

1-10 of 522

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>