Identification of properties of the inhomogeneous viscoelastic circular plate
UDC
539.3Abstract
In the present research, we construct a model of significantly inhomogeneous viscoelastic circular plate clamped along its contour. We consider the steady vibrations of the plate caused by a load distributed on a circumference of a certain radius at the plate's surface. To take into account the damping effect of viscoelastic materials, we use the standard model of viscoelastic body based on the theory of complex modules. To simulate the plate's deformation behavior, we use the Kirchhoff-Love hypothesis. With the use of the variational principle of Hamilton-Ostrogradskii, we derive the wave equation and the boundary conditions for the plate. Two inverse problems on the identification of the instant and long modules included in the complex modulus are formulated. The first inverse problem uses the additional data on the given function of frequency flexure of the plate. The second one uses the measured function values at a single point for some definite set of frequencies. In the second section by methods for solving formulated direct and inverse problems are described. The first inverse problem is linear, and it is solved using the Galerkin method; a specific set of basis functions is selected for that. To solve the second problem which is significantly nonlinear and ill-posed, we develop a special iterative procedure based on the linearization method combining the use of the Galerkin method to solve direct problems at its every step and the solution of the systems of Fredholm's integral equations of the 1st kind; to regularize the latter, we employed the Tikhonov regularization method. The third section of proposed of approaches are illustrated by a representative set of computational experiments where both monotonic and non-monotonic functions are reconstructed. The error does not exceed 6% in all of the experiments conducted indicating that the proposed approaches are efficient enough in solving such problems.
Keywords:
identification, heterogeneity, viscoelasticity, complex modulus, circular plate, iterative process, regularizationFunding information
Работа выполнена при поддержке Российского фонда фундаментальных исследований (16-31-00144 мол-а, 16-01-00354 А) и Программы фундаментальных исследований по стратегическим направлениям развития науки Президиума РАН №1.
References
- Ватульян А.О. Обратные задачи в механике деформируемого твердого тела. М.: Физматлит, 2007. 223 с. [Vatul'yan A.O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse problems in mechanics of solids]. Moscow, Fizmatlit Publ., 2007, 223 p. (In Russian)]
- Кристенсен Р. Введение в механику композитов. М.: Мир, 1974. 338 с. [Kristensen R. Vvedenie v mekhaniku kompozitov [Introduction to the mechanics of composites]. Moscow, Mir Publ., 1974, 338 p. (In Russian)]
- Тимошенко С.П., Войновский-Кригер С. Пластинки и оболочки. М.: Физматгиз, 1963. 635 с. [Timoshenko S.P., Voynovskiy-Kriger S. Plastinki i obolochki [The plates and the shells]. Moscow, Fizmatgiz Publ., 1963, 635 p. (In Russian)]
- Папков С.О. Колебания прямоугольной ортотропной пластины со свободными краями: анализ и решение бесконечной системы // Акуст. журн. 2015. Т. 61. № 2. С. 152-160. [Papkov S.O. Kolebaniya pryamougol'noy ortotropnoy plastiny so svobodnymi krayami: analiz i reshenie beskonechnoy sistemy [The vibrations of an orthotropic rectangular plate with free edges: the analysis and solution of the infinite system]. Akust. zhurn. [Acoustical physics], 2015, vol. 61, no. 2, pp. 152-160. (In Russian)]
- Леоненко Д.В. Колебания круговых трехслойных пластин на упругом основании Пастернака // Экологический вестник научных центров Черноморского экономического сотрудничества. 2014, № 1. С. 59-63. [Leonenko D.V. Kolebaniya krugovykh trekhsloynykh plastin na uprugom osnovanii Pasternaka [The vibrations of circular sandwich plates on the Pasternak elastic foundation]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva. [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2014, no. 1, pp. 59-63. (In Russian)]
- Ходжаев Д.А., Эшматов Б.Х. Нелинейные колебания вязкоупругой пластины с сосредоточенными массами // Прикладная механика и техническая физика. 2007. Т. 48. № 6. С. 158-169. [Khodzhaev D.A., Eshmatov B.Kh. Nelineynye kolebaniya vyazkouprugoy plastiny s sosredotochennymi massami [Nonlinear vibrations of a viscoelastic plate with concentrated masses]. Prikladnaya mekhanika i tekhnicheskaya fizika. [Journal of Applied Mechanics and Technical Physics], 2007, vol. 48, no .6, pp. 158-169. (In Russian)]
- Chuanmeng Y., Guoyong J., , Xinmao Y., Zhigang L. A modified Fourier-Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials // International Journal of Mechanical Sciences. 2016. Vol.106. P. 1-18.
- Kima S., Kreiderb K.L. Parameter identification for nonlinear elastic and viscoelastic plates // Applied Numerical Mathematics. 2006. Vol. 56. No. 12. P. 1538-1554.
- Ватульян А.О., Беляк О.А., Сухов Д.Ю., Явруян О.В. Обратные и некорректные задачи. Ростов-на-Дону: Изд. ЮФУ. 2011. 232 с. [Vatul'yan A.O., Belyak O.A., Sukhov D.Yu., Yavruyan O.V. Obratnye i nekorrektnye zadachi [Inverse and incorrect problems]. Rostov-on-Don, YuFU Publ., 2011, 232 p. (In Russian)]
- Ватульян А.О., textit{Соловьев А.Н.} Об итерационном подходе в обратных задачах теории упругости // Экологический вестник научных центров Черноморского экономического сотрудничества. 2006. № 1. С. 23-29. [Vatul'yan A.O., Solov'ev A.N. Ob iteratsionnom podkhode v obratnykh zadachakh teorii uprugosti [An iterative approach to inverse problems of the theory of elasticity]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2006, no. 1, pp. 23-29. (In Russian)]
- Аникина Т.А., Ватульян А.О., Углич П.С. Об определении переменной жесткости круглой пластины // Вычислительные технологии. 2012. Т. 17. № 6. С. 26-35. [Anikina T.A., Vatul'yan A.O., Uglich P.S. Ob opredelenii peremennoy zhestkosti krugloy plastiny [Determination of the circular plates of variable hardness]. Vychislitel'nye tekhnologii [Computational technologies], 2012, vol. 17, no. 6. pp. 26-35. (In Russian)]
- Богачев И.В., Ватульян А.О., Явруян О.В. Реконструкция жесткости неоднородной упругой пластины // Акустический журнал. 2016. Т. 62. № 3. С. 369-374. [Bogachev I.V., Vatul'yan A.O., Yavruyan O.V. Rekonstruktsiya zhestkosti neodnorodnoy uprugoy plastiny [Reconstruction of non-uniform stiffness elastic plate]. Akusticheskiy zhurnal [Acoustical physics], 2016, vol. 62, no. 3, pp. 369-374. (In Russian)]
- Vatulyan A.O., Yavruyan O.V., Bogachev I.V. Reconstruction of inhomogeneous properties of orthotropic viscoelastic layer // International J. of Solids and Structures. 2014. Vol. 51. No. 11-12. P. 2238-2243.
- Флетчер К. Численные методы на основе метода Галеркина. М.: Мир, 1988. 352 с. [Fletcher K. Chislennye metody na osnove metoda Galerkina [Numerical methods based on the Galerkin method]. Moscowm, Mir Publ., 1988, 352 p. (In Russian)]
- Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979. 288 с. [Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving ill-posed problems]. Moscow, Nauka Publ., 1979, 288 p. (In Russian)]
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2016 Аникина Т.А., Богачёв И.В., Ватульян А.О., Дударев В.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.