Circulation Flow around a Thin Plate

Authors

  • Zolotuhina V.G. Kuban State University, Krasnodar, Russian Federation
  • Bunyakin A.V. Kuban State University, Krasnodar, Russian Federation
  • Markovsky A.N. Kuban State University, Krasnodar, Russian Federation

UDC

519.632.4+532.5.031

EDN

ACIKUX

DOI:

10.31429/vestnik-17-1-2-42-47

Abstract

The problem of plane-parallel flow around of contuer by flow of an ideal incompressible fluid is considered. The current function in general is represented in the form of three terms: the first term is responsible for the flow in infinity, the second term is the simple layer potential and it is responsible for the potential flow, and finally, the third term is the Roben’s potential and is responsible for the circulation flow around the contuer. To calculate the current function of the general circulation flow problem, it is required to determine the densities of two potentials. A simple algorithm for calculating unknown densities is proposed, based on the harmonic continuation of the stream function into the region bounding by the contuer. For approximation, we use special complete systems of basis potentials -- shift systems for the fundamental solution of the Laplace equation with shifts within the region. The approximation coefficients are determined by solving a system of linear equations with a Gram matrix. The algorithm for solving the Roben’s problem is briefly described. The results of computational experiments for a thin plate at different circulation values are presented. The results of computer modeling are compared with a picture of the real flow from the album of M. Van-Dyke. The proposed algorithm can be effectively used to calculate the streamflow function, not only thin, but also piecewise-smooth contours of various geometries.

Keywords:

plane-parallel flow, potential flow, function of current, potential of the Robin, full system potential

Authors info

  • Vera G. Zolotuhina

    аспирант кафедры теории функций Кубанского государственного университета

  • Aleksey V. Bunyakin

    канд. физ.–мат. наук, доцент кафедры математических и компьютерных методов Кубанского государственного университета

  • Aleksey N. Markovsky

    канд. физ.–мат. наук, доцент кафедры математических и компьютерных методов Кубанского государственного университета

References

  1. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. Ч. 1. М.: Физматгиз, 1963. 583 с. [Kochin N.E., Kibel' I.A., Roze N.V. Teoreticheskaya gidromekhanika. Ch. 1 [Theoretical hydromechanics, pt. 1]. Fizmatgiz, Moscow, 1963. (In Russian)]
  2. Марсден Дж.Э., Чорин А. Математические основы механики жидкости. М.-Ижевск: НИЦ РХД, 2004. 204 с. [Marsden, Dzh.E., Chorin, A. Matematicheskie osnovy mekhaniki zhidkosti [Mathematical foundations of fluid mechanics]. RKhD, Moscow-Izhevk, 2004. (In Russian)]
  3. Мазо А.Б. Вычислительная гидродинамика. Ч. 1. Математические модели, сетки и сеточные схемы. Казань: КФУ, 2018. 165 с. [Mazo A.B. Vychislitel'naya gidrodinamika. Ch. 1. Matematicheskie modeli, setki i setochnye skhemy [Computational fluid dynamics. Part 1. Mathematical models, grids and mesh schemes]. KFU, Kazan, 2018. (In Russian)]
  4. Мазо А.Б. Вычислительная гидродинамика. Ч. 2. Cеточные схемы метода конечных элементов. Казань: КФУ, 2018. 125 с. [Mazo A.B. Vychislitel'naya gidrodinamika. Ch. 2. Cetochnye skhemy metoda konechnykh elementov [Computational fluid dynamics. Part 2. Grid schemes of the finite element method]. KFU, Kazan, 2018. (In Russian)]
  5. Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. 618 с. [Rouch P. Vychislitel'naya gidrodinamika [Computational Fluid Dynamics]. Mir, Moscow, 1980. (In Russian)]
  6. Лежнев М.В. Задачи и алгоритмы плоскопараллельных течений. Краснодар: КубГУ, 2009. 133 с. [Lezhnev M.V. Zadachi i algoritmy ploskoparallel'nykh techeniy [Problems and algorithms of plane-parallel flows]. Kuban State University, Krasnodar, 2009. (In Russian)]
  7. Владимиров В.С. Уравнения математической физики. М.: Наука, 1985. 512 с. [Vladimirov V.S. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Nauka, Moscow, 1985. (In Russian)]
  8. Лежнев А.В., Лежнев В.Г. Метод базисных потенциалов в задачах математической физики и гидродинамики. Краснодар: КубГУ, 2009. 111 с. [Lezhnev A.V., Lezhnev V.G. Metod bazisnykh potentsialov v zadachakh matematicheskoy fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)]
  9. Лежнев В.Г., Марковский А.Н. Проекционные алгоритмы вычисления потенциала Робена // Вычислительные методы и программирование. 2019. Т. 20. № 4. C. 378–385. [Lezhnev V.G., Markovskiy A.N. Proektsionnye algoritmy vychisleniya potentsiala Robena [Projection Algorithms for Calculating Robin Potential]. Vychislitel'nye metody i programmirovanie [Computational Methods and Programming], 2019, vol. 20, no. 4, pp. 378–385. (In Russian)]
  10. Ван-Дайк М. Альбом течений жидкости и газа. М.: Мир, 1986. 184 с. [Van-Dayk M. Al'bom techeniy zhidkosti i gaza [Album of fluid and gas flows]. Mir, Moscow, 1986. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

42-47

Section

Mechanics

Dates

Submitted

January 24, 2020

Accepted

February 2, 2020

Published

March 31, 2020

How to Cite

[1]
Zolotuhina, V.G., Bunyakin, A.V., Markovsky, A.N., Circulation Flow around a Thin Plate. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 1, pp. 42–47. DOI: 10.31429/vestnik-17-1-2-42-47

Similar Articles

1-10 of 283

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>