Effect of interaction of heterogeneous base phases on contact stresses at punch oscillations with friction

Authors

  • Belyak O.A. Rostov State Transport University, Rostov-on-Don, Russian Federation
  • Suvorova T.V. Rostov State Transport University, Rostov-on-Don, Russian Federation

UDC

539.3

EDN

GLSWGK

DOI:

10.31429/vestnik-17-3-29-36

Abstract

The dynamic contact problem of vibrations of a rigid punch on a semi-infinite heterogeneous foundation, consisting of a viscoelastic skeleton and a viscous fluid, is considered, taking into account friction in the contact area and phase interaction. The microstructure of the base is taken into account in the framework of the model of a heterogeneous medium, which is described by the Biot-Frenkel equations. The boundary value problem using the Fourier transform is reduced to an integral equation of the first kind with a difference kernel. After regularization the integral equation by explicitly identifying the singularity of its kernel, the solution is constructed approximately, while the numerical discretization of the contact area is carried out on the basis of the boundary element method. Approximate solutions are constructed that describe contact pressures and tangential displacements under the punch. The calculations were carried out for an oil-filled composite based on aromatic polyamide phenylone containing an aluminosilicate nanosized additive bentonite. The dependences of the propagation of surface waves with an increase in the viscosity and permeability of the base, the influence on the contact stresses of the oscillation frequency, porosity and permeability of a heterogeneous medium, and fluid viscosity are investigated. At low values, an increase in viscosity and a decrease in the permeability coefficient of the composite reduces the asymmetry of the distribution of contact stresses, and causes the maximum stress in the contact area to move during the oscillation period. At higher frequencies and higher viscosity, the effect of stress stabilization under the punch far from its edges is observed.

Keywords:

dynamic contact problem, friction and oscillation in contact domain, interaction liquid and elastic foundation media

Funding information

Работа выполнена при поддержке РФФИ (грант 18-08-00260-а).

Authors info

  • Olga A. Belyak

    канд. физ.-мат. наук, доцент кафедры высшей математики Ростовского государственного университета путей сообщения

  • Tatyana V. Suvorova

    д-р физ.-мат. наук, профессор кафедры высшей математики Ростовского государственного университета путей сообщения

References

  1. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Блочные элементы в контактных задачах с переменным коэффициентом трения // ДАН. 2018. Т. 480. № 5. С. 537–541. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Blochnyye elementy v kontaktnykh zadachakh s peremennym koeffitsiyentom treniya [Block elements in contact problems with a variable friction coefficient]. Doklady akademii nauk [Doklady Physics], 2018, vol. 63, no. 6, pp. 239–243. DOI: 10.7868/S0869565218050067 (In Russian)]
  2. Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 344 с. [Babeshko, V.A., Glushkov, E.V., Zinchenko, J.F. Dinamika neodnorodnykh lineyno-uprugikh sred [Dynamics of heterogeneous linearly elastic media]. Nauka, Moscow, 1989. (In Russian)]
  3. Горячева И.Г., Маховская Ю.Ю., Морозов А.В., Степанов Ф.И. Трение эластомеров. Ижевск: Ин-т компьютерных исследований, 2017. 204 с. [Goryacheva, I.G. Makhovskaya, Yu.Yu., Morozov, A.V., Stepanov, F.I. Treniye elastomerov [Friction of elastomers]. Institute of Computer Research, Moscow–Izhevsk, 2017. (In Russian)]
  4. Суворова Т.В, Беляк О.А. Контактные задачи для пористоупругого композита при наличии сил трения // Прикладная математика и механика. 2020. Т. 84. № 4. С. 522–532. [Suvorova, T.V., Belyak, O.A. Kontaktnye zadachi dlya poristouprugogo kompozita pri nalichii sil treniya [Contact problems for porous composite in the presence of friction forces]. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 2020, vol. 84, no. 4, pp. 522–532. (In Russian)]
  5. Беляк О.А., Суворова Т.В. Влияние микроструктуры основания на силы трения при движении плоского штампа // Экологический вестник научных центров Черноморского экономического сотрудничества. 2018. Т. 15. № 3. С. 25–31. [Belyak, O.A., Suvorova, T.V. Vliyaniye mikrostruktury osnovaniya na sily treniya pri dvizhenii ploskogo shtampa [The influence of the base microstructure on the friction forces during the movement of a flat punch]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2018, vol. 15, no. 3, pp. 25–31. (In Russian)]
  6. Беляк О.А., Суворова Т.В. Учет трения в области контакта при колебаниях жесткого штампа на поверхности полуограниченной среды // Экологический вестник научных центров Черноморского экономического сотрудничества. 2019. Т. 16. № 3. С. 33–39. [Belyak O.A., Suvorova T.V. Uchet treniya v oblasti kontakta pri kolebaniyah zhestkogo shtampa na poverhnosti poluogranichennoj sredy [Accounting for the friction in the contact area with oscillation of a rigid punch on surface a semi-infinite medium]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2019, vol. 16, no. 3, pp. 33–39. (In Russian)]
  7. Колесников В.И., Беляк О.А., Колесников И.В., Суворова Т.В. О математической модели для прогнозирования трибологических свойств маслонаполненных композитов при вибрации // ДАН. Физика, техн. науки. 2020. Т. 491. С. 44–47. [Kolesnikov, V.I., Belyak, O.A., Kolesnikov, I.V., Suvorova, T.V. About mathematical model for predictive the tribological properties of oil. Doklady Physics, 2020, vol. 65, no. 4, pp. 149–152. DOI: 10.1134/S1028335820040060.]
  8. Био М.А. Механика деформирования и распространения акустических волн в пористой среде, Период. сб. переводов иностр. статей. 1963. Вып. 6. № 82. С. 103–134. [Bio, M.A. Mekhanika deformirovaniya i rasprostraneniya akusticheskih voln v poristoj srede [Mechanics of deformation and propagation of acoustic waves in a porous medium]. Period. sb. perevodov inostr. statej [Period. collection of translations of foreign. articles], 1963, no. 82, iss. 6, pp. 103–134. (In Russian)]
  9. Chao-Lung Yeh, Wei-Cheng Lo, Chyan-Deng Jan, Chi-Chin Yang. Reflection and refraction of obliquely incident elastic waves upon the interface between two porous elastic half-spaces saturated by different fluid mixtures // Journal of Hydrology. 2010. Vol. 395. P. 91–102. [Chao-Lung, Yeh, Wei-Cheng, Lo, Chyan-Deng, Jan, Chi-Chin, Yang. Reflection and refraction of obliquely incident elastic waves upon the interface between two porous elastic half-spaces saturated by different fluid mixtures. Journal of Hydrology, 2010, vol. 395, pp. 91–102. DOI:10.1016/j.jhydrol.2010.10.018]
  10. Колесников В.И., Суворова Т.В. Моделирование динамического поведения системы <<верхнее строение железнодорожного пути – слоистая грунтовая среда>>. М.: ВИНИТИ РАН,2003. 232 с. [Kolesnikov, V.I., Suvorova, T.V. Modelirovanie dinamicheskogo povedeniya sistemy ``verhnee stroenie zheleznodorozhnogo puti - sloistaya gruntovaya sreda'' [Modeling the dynamic behavior of the system ``railway track superstructure – layered soil medium'']. VINITI RAS, Moscow, 2003. (In Russian)]
  11. Бребия К., Теллес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987. 524 с. [Brebbia, C.A., Telles, J., Wrobel, L. Boundary Element Methods – Theory and Applications in Engineering. Springer-Verlag, 1984.]
  12. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. М.: Наука, 1974. Т. 2. 296 с. [Bateman, G., Erdeyi, A. Higher transcendental functions. McGraw-Hill Book Company, vol. I–III, 1953.]
  13. Янке Е., Эмде Ф., Лёш Ф. Специальные функции. М.: Наука, 1964. 344 с. [Janke, E., Emde, F., Lesch, F. Spetsialnyye funktsii [Special functions]. Nauka, Moscow, 1964. (In Russian)]
  14. Wu A, Yang B, Xi Y, Jiang H. Pore structure of ore granular media by computerized tomography image processing // Journal of Central South University of Technology. 2007. Vol. 14. Iss. 2. P. 220–224.
  15. Куршин А.П. Закономерности изменения проницаемости пористых сред при фильтрационных течениях // Ученые записки ЦАГИ. 2008. Т. XXXIX. № 1–2. C. 125–135. [Kurshin, A.P. Zakonomernosti izmeneniya pronicaemosti poristyh sred pri fil'tracionnyh techeniyah [Regularities of the change in the permeability of porous media during filtration flows]. Uchenye zapiski CAGI [TsAGI scientific notes], 2008, vol. XXXIX, no. 1–2, pp. 125–135. (In Russian)]
  16. Genuchten M., Pachepsky Y. Hydraulic properties of unsaturated soils // Encyclopedia of Agrophysics. 2011. P. 368–376.
  17. Smeulders D. M. J. On wave propagation in saturated and partially saturated porous media. Eindhoven. Technische Universiteit Eindhoven, 1992. 133 p.
  18. Zheng Y., Zaoui A. Mechanical behavior in hydrated Na-montmorillonite clay // Physica A. 2018. Vol. 505. P. 582–590.
  19. Belyak O.A., Suvorova T.V. Modeling stress deformed state upon contact with the bodies of two-phase microstructure // Solid State Phenomena. 2020. Vol. 299. P. 124–129.

Downloads

Download data is not yet available.

Issue

Pages

29-36

Section

Mechanics

Dates

Submitted

July 31, 2020

Accepted

August 15, 2020

Published

September 28, 2020

How to Cite

[1]
Belyak, O.A., Suvorova, T.V., Effect of interaction of heterogeneous base phases on contact stresses at punch oscillations with friction. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 3, pp. 29–36. DOI: 10.31429/vestnik-17-3-29-36

Similar Articles

1-10 of 1093

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)