Reconstruction of variable thermophysical properties of a rectangular region

Authors

  • Nesterov S.A. Southern Mathematical Institute, a branch of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russian Federation ORCID iD 0000-0003-3780-5104

UDC

563.24

EDN

NBFMDW

DOI:

10.31429/vestnik-21-4-45-54

Abstract

The article studies a two-dimensional coefficient inverse problem of heat conductivity based on reconstruction of variable thermophysical properties of a rectangular region. Zero temperature is specified on the lower side of the functionally gradient rectangle, the lateral sides are thermally insulated, and an unsteady heat flux acts on the upper side. The temperature specified on the upper boundary of the rectangular region for some moments of time serves as additional information. The solution of the direct problem in a weak formulation is implemented in the finite element package FreeFem++. The influence of the thermal conductivity coefficient and specific heat capacity on the temperature of the upper face is investigated. A projection-iteration scheme for solving the inverse problem is proposed. Thermophysical characteristics at each stage of the iteration process are presented as an expansion in a system of polynomials. The expansion coefficients are determined by solving a system of algebraic equations obtained by discretizing the Fredholm integral equation of the first kind. Tikhonov's method is used to regularize the ill-conditioned algebraic system of equations. The results of separate reconstruction of the coefficient of thermal conductivity and specific heat capacity of a rectangle for monotone functions are presented.

Keywords:

Fredholm integral equation of the first kind, identification, rectangular domain, coefficient of thermal conductivity, specific heat capacity, coefficient inverse problem, finite element package FreeFem , iterative-projection approach.

Funding information

The study did not have sponsorship.

Author info

  • Sergey A. Nesterov

    д-р физ.-мат. наук, ведущий научный сотрудник отдела дифференциальных уравнений Южного математического института - филиала ВНЦ РАН

References

  1. Nemat-Alla, M., Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials. Acta Mechanica, 2009, vol. 208, pp. 147–161. DOI: 10.1007/s00707-008-0136-1
  2. Kieback, B., Neubrand, A., Riedel, H., Processing techniques for functionally graded materials. Materials Science and Engineering: A, 2003, vol. 362, pp. 81–105. DOI: 10.1016/S0921-5093(03)00578-1
  3. Birman, V., Byrd, L.W., Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 2007, vol. 60(5), pp. 195–216. DOI: 10.1115/1.2777164
  4. Gupta, A., Talha, M., Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences, 2015, vol. 79, pp. 1–14. DOI: 10.1016/j.paerosci.2015.07.001
  5. Ватульян, А.О., Нестеров, С.А., Коэффициентные обратные задачи термомеханики. Ростов-на-Дону – Таганрог, Издательство Южного федерального университета, 2022. [Vatulyan, A.O., Nesterov, S.A., Koeffitsiyentnyye obratnyye zadachi termomekhaniki = Coefficientinverse problems of thermomechanics. Rostov-on-Don – Taganrog, Southern Federal University Publishing House, 2022. (in Russian)]
  6. Полатов, А., Икрамов, А., Жуманиёзов, С., Сапаев, Ш., Компьютерное моделирование двумерных нестационарных задач теплопроводности для неоднородных тел методом конечных элементов. Проблемы вычислительной и прикладной математики, 2022, № 2(39), с. 61–71. [Polatov, A., Ikramov, A., Zhumaniyozov, S., Sapayev, Sh., Computer modeling of two-dimensional non-stationary heat conduction problems for inhomogeneous bodies by the finite element method. Problemy vychislitel'noy i prikladnoy matematiki = Problems of Computational and Applied Mathematics, 2022, no. 2(39), pp. 67–71 (in Russian)]
  7. Жуков, М.Ю., Ширяева, Е.В., Решение задач математической физики при помощи пакета конечных элементов FreeFem++. Ростов-на-Дону, Издательство Южного федерального университета, 2005. [Zhukov, M.Yu., Shiryayeva, E.V., Resheniye zadach matematicheskoy fiziki pri pomoshchi paketa konechnykh elementov FreeFem++ = Solving problems of mathematical physics using the finite element package FreeFem++. Rostov on Don, Southern Federal University Publishing House, 2005. (in Russian)]
  8. Font, R., Periago, F. The finite element method with FreeFem++ for beginners. The Electronic Journal of Mathematics and Technology, 2013, vol. 7, no. 4, pp. 289–307.
  9. Алифанов, О.М., Артюхин, Е.А., Румянцев, С.В., Экстремальные методы решения некорректных задач. Москва, Наука, 1988. [Alifanov, O.M., Artyukhin, E.A., Rumyantsev, S.V., Ekstremal'nyye metody resheniya nekorrektnykh zadach = Extreme methods for solving ill-posed problems. Moscow, Nauka, 1988. (in Russian)]
  10. Кабанихин, С.И., Гасанов, А., Пененко, А.В., Метод градиентного спуска для решения коэффициентной обратной задачи теплопроводности. Сибирский журнал вычислительной математики, 2008, т. 11, № 1, с. 41–54. [Kabanikhin, S.I., Hasanov, A., Penenko, A.V., A gradient descent method forsolving an inverse coefficient heat conduction problem. Numerical Analysis and Applications, 2008, vol. 1, no. 1, pp. 34–45. DOI: 10.1134/S1995423908010047] DOI: 10.1007/s12258-008-1004-x
  11. Cao, K., Lesnic, D., Determination of space-dependent coefficients from temperature measurements using the conjugate gradient method. Numerical Methods for Partial Differential Equations, 2018, vol. 34, no. 4, pp. 1370–1400. DOI: 10.1002/num.22262
  12. Dulikravich, G.S., Reddy, S.R., Pasqualette, M.A., Colaco, M.J., Orlande, H.R., Coverston, J., Inverse determination of spatially varying material coefficients in solid objects. Journal of Inverse and Ill-posed Problems, 2016, vol. 24, pp. 181–194. DOI: 10.1515/jiip-2015-0057
  13. Huang, C.H., Chin, S.C., A two-dimensional inverse problem in imaging the thermal conductivity of a non-homogeneous medium. International Journal of Heat and Mass Transfer, 2000, vol. 43(22), pp. 4061–4071. DOI: 10.1016/S0017-9310(00)00044-2
  14. Huang, C.H., Huang, C.Y., An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue. Applied Mathematical Modelling, 2007, vol. 31(9), pp. 1785–1797. DOI: 10.1016/j.apm.2006.06.002
  15. Reddy, S.R., Dulikravich, G.S., Zeidi, S.M.J., Non-destructive estimation of spatially varying thermal conductivity in 3D objects using boundary thermal measurements. International Journal of Thermal Sciences, 2017, vol. 118, pp. 488–496. DOI: 10.1016/j.ijthermalsci.2017.05.011
  16. Raudensky, M., Woodbary, K. A., Kral, J., Genetic algorithm in solution of inverse heat conduction problems. Numerical Heat Transfer. Part B: Fundamentals, 1995, vol. 28, no. 3, pp. 293–306. DOI: 10.1080/10407799508928835
  17. Yeung, W.K., Lam, T.T., Second-order finite difference approximation for inverse determination of thermal conductivity. International Journal of Heat and Mass Transfer, 1996, vol. 39 (17), pp. 3685–3693. DOI: 10.1016/0017-9310(96)00028-2
  18. Danilaev, P.G., Coefficient inverse problems for parabolic type equations and their applications. Utrecht, Boston, Koln, Tokyo, VSP, 2001.
  19. Xu, M.H., Cheng, J.C., Chang, S.Y., Reconstruction theory of the thermal conductivity depth profiles by the modulated photo reflectance technique. Journal of Applied Physics, 2004, vol. 84, no. 2, pp. 675–682. DOI: 10.1063/1.368122
  20. Nedin, R., Nesterov, S., Vatulyan, A., Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials. International Journal of Heat and Mass Transfer, 2016, vol. 102, pp. 213–218. DOI: 10.1016/j.ijheatmasstransfer.2016.06.027
  21. Ватульян, А.О., Нестеров, С.А., Об особенностях идентификации переменных термомеханических характеристик функционально-градиентного прямоугольника. Вычислительная механика сплошных сред, 2023, т. 16, № 4, с. 504–516. [Vatulyan, A.O., Nesterov, S.A., On the features of identification of variable thermomechanical characteristics of a functionally graded rectangle. Vychislitel'naya mekhanika sploshnykh sred = Computational Continuum Mechanics, 2023, vol. 16, no. 4, pp. 504–516. (in Russian)] DOI: 10.7242/1999-6691/2023.16.4.42
  22. Нестеров, С.А., О различных подходах к решению коэффициентной обратной задачи теплопроводности для неоднородного стержня. Экологический вестник научных центров Черноморского экономического сотрудничества, 2024, т. 21, № 3, с. 32–44. [Nesterov, S.A., On various approaches to solving the coefficient inverse problem of heat conductivityfor a inhomogeneous rod. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2024, vol. 21, no. 3, pp. 32–44. (in Russian)]. DOI: 10.31429/vestnik-21-3-32-44 EDN: IXLFIG
  23. Богачев, И.В., Недин, Р.Д., Идентификация двумерных полей предварительных напряжений в неоднородных пластинах. Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2023. т. 23, №. 4, с. 456–471. [Bogachev, I.V., Nedin, R.D., Identification of two-dimensional prestress fields in inhomogeneous plates. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika = Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, no. 4, pp. 456–471. (in Russian)] DOI: 10.18500/1816-9791-2023-23-4-456-471
  24. Ватульян, А.О., Богачев, И.В., О проекционном методе идентификации характеристик неоднородных тел. ДАН, 2018, т. 478, № 5, с. 532–535. [Vatulyan, A.O., Bogachev, I.V., The projection method for identification of the characteristics of inhomogeneous solids. Doklady Physics, 2018, vol. 63, pp. 82–85. DOI: 10.1134/S1028335818020088] DOI: 10.7868/S0869565218050079
  25. Тихонов, А.Н., Гончарский, А.В., Степанов, В.В., Ягола, А.Г., Численные методы решения некорректных задач. Москва, Наука, 1990. [Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G, Chislennye metody resheniya nekorrektnykh zadach = Numerical methods for solving ill-posed problems, Moscow, Nauka, 1990. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

45-54

Section

Mechanics

Dates

Submitted

October 14, 2024

Accepted

November 27, 2024

Published

December 20, 2024

How to Cite

[1]
Nesterov, S.A., Reconstruction of variable thermophysical properties of a rectangular region. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2024, т. 21, № 4, pp. 45–54. DOI: 10.31429/vestnik-21-4-45-54

Similar Articles

1-10 of 808

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>