Construction of elastic fields for anisotropic bodies under the action of a local load
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-21-4-29-37Abstract
The paper presents a mathematical model for constructing elastic non-axisymmetric fields for an anisotropic body bounded by coaxial surfaces of revolution. The body is in equilibrium under the action of external forces distributed over the body surface in a non-trivial manner. The cylinder material has rectilinear transverse isotropy. The model is constructed based on the energy method of boundary states. The basis of the space of internal states as part of the boundary state method is formed according to the general idea expressing the spatial stress-strain state through a set of plane auxiliary states. Such states are solutions to the problem of plane deformation. After forming the basis of internal states, it is orthogonalized, and the sought characteristics of the stress-strain state are expanded in a Fourier series by the elements of the orthonormal basis, where the coefficients are quadratures. The solution of the first main problem of elasticity theory for a circular cylinder made of transversely isotropic rock is presented. Surface forces are distributed over a complex function. The result is presented in graphical form.
Keywords:
boundary state method, transversely isotropic materials, spatial problem, asymmetric problemFunding information
The study did not have sponsorship.
References
- Александров, А.Я., Соловьев, Ю.И., Пространственные задачи теории упругости (применение методов теории функций комплексного переменного). Москва, Наука, Главная редакция физико-математической литературы, 1978. [Aleksandrov, A.Ya., Solov`ev, Yu.I., Spatial problems of the theory of elasticity (application of methods of the theory of functions of a complex variable), Moscow, Nauka, Glavnaya redakciya fiziko-matematicheskoj literatury`, 1978. (in Russian)]
- Лехницкий, С.Г., Анизотропные пластинки. Москва, ОГИЗ, 1947. [Lekhnitsky, S.G., Anisotropic plates. Moscow, OGIZ, 1947. (in Russian)]
- Пеньков В.Б., Пеньков В.В., Метод граничных состояний для решения задач линейной механики. Дальневосточный математический журнал, 2001, т. 2, №2, с. 115–137. [Penkov, V.B., Penkov, V.V., The boundary state method for solving linear mechanics problems. Dal`nevostochny`j matematicheskij zhurnal, 2001, vol. 2, no. 2, pp. 115–137. (in Russian)]
- Саталкина, Л.В., Наращивание базиса пространства состояний при жестких ограничениях к энергоемкости вычислений. В Сборник тезисов докладов научной конференции студентов и аспирантов Липецкого государственного технического университета. Липецк, ЛГТУ, 2007, с. 130–131. [Satalkina, L.V., Building up the basis of the state space with hard constraints on the energy intensity of computations. In Sbornik tezisov dokladov nauchnoj konferencii studentov i aspirantov Lipeczkogo gosudarstvennogo texnicheskogo universiteta. Lipeczk, LGTU, 2007, pp. 130–131. (in Russian)]
- Лехницкий, С.Г., Теория упругости анизотропного тела. Москва, Наука, 1977. [Lexniczkij, S.G. Theory of elasticity of anisotropic body. Izd. 2, Moscow, Nauka, 1977. (in Russian)]
- Левина, Л.В., Новикова, О.С., Пеньков, В.Б., Полнопараметрическое решение задачи теории упругости односвязного ограниченного тела. Вестник ЛГТУ, 2016, № 2 (28), с. 16–24. [Levina, L.V., Novikova, O.S., Penkov, V.B., Full-parameter solution of the problem of the theory of elasticity of a simply connected bounded body. Vestnik LGTU, 2016, no. 2 (28), pp. 16–24. (in Russian)]
- Иванычев, Д.А., Решение неосесимметричной задачи эластостатики для трансверсально-изотропного тела вращения. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022, № 2(101), c. 4–21. [Ivanychev, D.A., Solution of a non-axisymmetric elastostatic problem for a transversely isotropic body of revolution. Bulletin of Bauman Moscow State Technical University. Series: Natural Sciences. 2022, no. 2(101), pp. 4–21. (in Russian)] DOI: 10.18698/1812-3368-2022-2-4-21
- Иванычев, Д.А., Решение смешанной неосесимметричной задачи теории упругости для анизотропных тел вращения. Вестник Пермского национального исследовательского политехнического университета. Механика. 2022, № 2, с. 85–97. [Ivanychev, D.A., Solution of a mixed non-axisymmetric problem of elasticity theory for anisotropic bodies of revolution. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2022, no. 2, pp. 85–97. (in Russian)] DOI: 10.15593/perm.mech/2022.2.08
- Иванычев, Д.А., Левина, Е.Ю., Определение неосесимметричных упругих полей в анизотропных телах вращения, вызванных действием объемных сил. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022, № 4(103), с. 22–38. [Ivanychev, D.A., Levina, L.V., Determination of non-axisymmetric elastic fields in anisotropic bodies of revolution caused by the action of volume forces. Bulletin of Bauman Moscow State Technical University. Series: Natural Sciences. 2022, no. 4(103), pp. 22–38. (in Russian)] DOI: 10.18698/1812-3368-2022-4-22-38
- Лурье, А.И., Пространственные задачи теории упругости. Москва, Госиздат технико-теоретической литературы, 1955. [Lur'ye, A.I. Spatial problems of the theory of elasticity. Moscow, Gosizdat tekhniko-teoreticheskoy literatury, 1955. (in Russian)]
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2024 Иванычев Д.А., Балыкин Д.И., Ездакова Д.В., Малявин Е.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.